首 页 - ┆ 小小说社会科学搜榜改进建议哲学宗教政治法律文化科教语言文字医学管理资源艺术资料数理化天文地球专业技术教育资源建筑房地产
当前位置:e书联盟 > 建筑房地产 > 建筑房地产ppt
第7章 MATLAB解方程与函数极值.ppt
运行环境:Win9X/Win2000/WinXP/Win2003/
建筑语言:简体中文
建筑类型:国产软件 - 建筑房地产ppt
授权方式:共享版
建筑大小:65.0 KB
推荐星级:
更新时间:2019-12-30 17:53:26
联系方式:暂无联系方式
官方主页:Home Page
解压密码:点击这里
  • 好的评价 此建筑真真棒!就请您
      0%(0)
  • 差的评价 此建筑真差劲!就请您
      0%(0)

第7章 MATLAB解方程与函数极值.ppt介绍

第7章  MATLAB解方程与函数极值 7.1  线性方程组求解 7.2  非线性方程数值求解 7.3  常微分方程初值问题的数值解法 7.4 函数极值 7.1  线性方程组求解 max.book118.com 直接解法 1.利用左除运算符的直接解法 对于线性方程组Ax=b,可以利用左除运算符“\”求解:             x=A\b 例7-1  用直接解法求解下列线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; x=A\b 2.利用矩阵的分解求解线性方程组 矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有LU分解、QR分解、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。 (1) LU分解 矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的。 MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为: [L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。 [L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。 实现LU分解后,线性方程组Ax=b的解x=U\(L\b)或x=U\(L\Pb),这样可以大大提高运算速度。 例7-2  用LU分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [L,U]=lu(A); x=U\(L\b) 或采用LU分解的第2种格式,命令如下: [L,U ,P]=lu(A); x=U\(L\P*b)  (2) QR分解 对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为: [Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。 [Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。 实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或x=E(R\(Q\b))。 例7-3  用QR分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [Q,R]=qr(A); x=R\(Q\b) 或采用QR分解的第2种格式,命令如下: [Q,R,E]=qr(A); x=E*(R\(Q\b))  (3) Cholesky分解 如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为: R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。 [R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。 实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x=R\(R’\b)。 例7-4  用Cholesky分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; R=chol(A) ??? Error using ==  chol Matrix must be positive definite 命令执行时,出现错误信息,说明A为非正定矩阵。 max.book118.com 迭代解法 迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。 1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0(i=1,2,…,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为: x(k+1)=D-1(L+U)x(k)+D-1b 这就是Jacobi迭代公式。如果序列{x(k+1)}收敛于x,则x必是方程Ax=b的解。 Jacobi迭代法的MATLAB函数文件Jacobi.m如下: function [y,n]=jacobi(A,b,x0,eps) if nargin==3     eps=1.0e-6; elseif nargin 3     error     return end       D=diag(diag(A));    %求A的对角矩阵 L=-tril(A,-1);       %求A的下三角阵 U=-triu(A,1);       %求A的上三角阵 B=D\(L+U); f=D\b; y=B*x0+f; n=1;                  %迭代次数 while norm(y-x0) =eps     x0=y;     y=B*x0+f;     n=n+1; end 例7-5  用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。 在命令中调用函数文件Jacobi.m,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; [x,n]=jacobi(A,b,[0,0,0]',1.0e-6) 2.Gauss-Serdel迭代法 在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到: x(k+1)=(D-L)-1Ux(k)+(D-L)-1b 该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel迭代用新分量代替旧分量,精度会高些。 Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下: function [y,n]=gauseidel(A,b,x0,eps) if nargin==3     eps=1.0e-6; elseif nargin 3     error     return end       D=diag(diag(A));    %求A的对角矩阵 L=-tril(A,-1);      %求A的下三角阵 U=-triu(A,1);       %求A的上三角阵 G=(D-L)\U; f=(D-L)\b; y=G*x0+f; n=1;                  %迭代次数 while nor

第7章 MATLAB解方程与函数极值.ppt

下载此电子书资料需要扣除0点,

电子书评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论

下载说明

* 即日起,本站所有电子书免费、无限量下载下载,去掉了每日50个下载的限制
* 本站尽量竭尽努力将电子书《第7章 MATLAB解方程与函数极值.ppt》提供的版本是完整的,全集下载
* 本站站内提供的所有电子书、E书均是由网上搜集,若侵犯了你的版权利益,敬请来信通知我们!
Copyright © 2005-2020 www.book118.com. All Rights Reserved