2006年全国初中数学竞赛试题
考试时间 2006年4月2日上午 9∶30-11∶30 满分120分
一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)
1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )
(A)36 (B)37 (C)55 (D)90
2.已知,,且=8,则a的值等于( )
(A)-5 (B)5 (C)-9 (D)9
3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则( )
(A)h 1 (B)h=1 (C)1 h 2 (D)h 2
4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )
(A)2004 (B)2005 (C)2006 (D)2007
5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为( )
(A)
(B)
(C)
(D)
二、填空题 (共5小题,每小题6分,满分30分)
6.已知a,b,c为整数,且a+b=2006,c-a=2005.若a b,则a+b+c的最大值为 .
7.如图,面积为的正方形DEFG内接于
面积为1的正三角形ABC,其中a,b,c为整数,
且b不能被任何质数的平方整除,则的值
等于 .
8.正五边形广场ABCDE的周长为2000米.甲、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.
9.已知0 a 1,且满足,则的值等于
.(表示不超过x的最大整数)
10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .
三、解答题(共4题,每小题15分,满分60分)
11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.
试写出一个满足条件的x;
求所有满足条件的x.
12.设,,为互不相等的实数,且满足关系式
①
②
求a的取值范围.
13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.
14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.
2006年全国初中数学竞赛试题参考答案
一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)
1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )
(A)36 (B)37 (C)55 (D)90
答:C.
解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55千米处.
故选C.
2.已知,,且=8,则a的值等于( )
(A)-5 (B)5 (C)-9 (D)9
答:C.
解:由已知可得,.又
=8,所以 解得a=-9
故选C.
3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则( )
(A)h 1 (B)h=1 (C)1 h 2 (D)h 2
答:B.
解:设点A的坐标为(a,a2),点C的坐标为(c,c2)(|c| |a|),则点B的坐标为
(-a,a2),由勾股定理,得,
,
所以 .
由于,所以a2-c2=1,故斜边AB上高h= a2-c2=1
故选B.
4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )
(A)2004 (B)2005 (C)2006 (D)2007
答:B.
解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.
因为这(k+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k+1)-34= k-33(个),而这些多边形的内角和不少于(k-33) ×180°.所以(k+1)×360°≥34×60×180°+(k-33)×180°,解得k≥2005.
当我们按如下方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便34个六十二边形和33×58个三角形.于是共剪了
58+33+33×58=2005(刀).
故选B.
5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为( )
(A)
(B)
(C)
(D)
答:D.
解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,
QA=r-m.
在⊙O中,根据相交弦定理,得QA·QC=QP·QD.
即 (r-m)(r+m)=m·QD ,所以 QD=.
连结DO,由勾股定理,得QD2=DO2+QO2,
即 , 解得
所以,
故选D.
二、填空题 (共5小题,每小题6分,满分30分)
6.已知a,b,c为整数,且a+b=2006,c-a=2005.若a b,则a+b+c的最大值为 .
答:5013.
解:由,,得 .
因为,a b,a为整数,所以,a的最大值为1002.
于是,a+b+c的最大值为5013.
7.如图,面积为的正方形DEFG内接于
面积为1的正三角形ABC,其中a,b,c为整数,
且b不能被任何质数的平方整除,则的值
等于 .
答:.
解:设正方形DEFG的边长为x,正三角形ABC的边长为m,则,
由△ADG∽△ABC,可得, 解得
于是 ,
由题意,,,,所以.
8.正五边形广场ABCDE的周长为2000米.甲、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.
答:104.
解:设甲走完x条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x米,乙走了46×=368x米.于是368(x-1)+800-400(x-1) 400,.
9.已知0 a 1,且满足,则的值等于 .(表示不超过x的最大整数)
答:6.
解:因为0 ,所以,,…,等于0或1.由题设知,其中有18个等于1,所以
=0,=1,
所以 ,1≤<2.
故18≤30a<19,于是6≤10 a<,所以=6.
10.小明家电话号码原为六位数,第一次升位是在首位号码和第
2006年全国初中数学竞赛试题及答案.doc
下载此电子书资料需要扣除0点,





