max.book118.com及其解集 [教学目标] 了解不等式概念,理解不等式的解集,能正确表示不等式的解集 培养学生的数感,渗透数形结合的思想. [教学重点与难点] 重点:不等式的解集的表示. 难点:不等式解集的确定. [教学设计] [设计说明] 一.问题探知 某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植 请 树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式? 依题意得4x 6(x-10) 1.不等式:用“ ”或“ ”号表示大小关系的式子,叫不等式. 解析:(1)用≠表示不等关系的式子也叫不等式 (2)不等式中含有未知数,也可以不含有未知数; (3)注意不大于和不小于的说法 例1 用不等式表示 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3. 二.不等式的解 不等式的解:能使不等式成立的未知数的值,叫不等式的解. 解析:不等式的解可能不止一个. 例2 下列各数中,哪些是不等是x+1 3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5 解:略. 练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3 5?的 资料由大小学习网收集 max.book118.com 资料由大小学习网收集 max.book118.com
9.1.1不等式及其解集.doc
下载此电子书资料需要扣除0点,