南苑中学教师备课笔记 课 题 §max.book118.com 花边有多宽(一) 第2课时 共1课时 教 学 目 标 1.理解一元二次方程的概念及它的有关概念;2 重 点 一元二次方程的概念及它的一般形式 难 点 一元二次方程的概念 教具准备 施教时间 2006年 月 日 教学过程: Ⅰ.创设现实情景、引入新课 经济时代的今天,你能根据商品的销售利润作出一定的决策吗?你能为一个矩形花园提供多种设计方案吗?…… 下面我们来学习第一节:花边有多宽.(板书) Ⅱ.讲授新课 例1 我们来看一个实际问题(小黑板) 一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽? 分析:从题中,找出已知量、未知量及问题中所涉及的等量关系. 这个题已知:这块地毯的长为8m,宽为5m,它中央长方形图案的面积为18m2. 所要求的是;地毯的花边有多宽.本题是以面积为等量关系. 如果设花边的宽为xm,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m,根据题意,可得方程(8-2x)(5-2x)=18 例2.下面我们来看一个数学问题(小黑板) 观察下面等式 102+112+122=132+142. 你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗? 总结: 这个问题可以有不同的设未知数的方法,同学们可灵活设未知数,即可设这五个数中的任意一个,其他四个数可随之变化. 例3 下面我们来看一个实际问题(小黑板): 如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米? 分析:墙与地面是垂直的,因而墙、地面和梯子构成了直角三角形.已知梯子的长为10m,梯子的顶端距地面的垂直距离为8m,所以由勾股定理可知,滑动前梯子底端距墙有6m. 设梯子底端滑动xm,那么滑动后梯子底端距墙(6+x)m,根据题意,利用勾股定理,可得方程. 上面的三个方程都是只含有一个未知数x的整式方程,等号两边都是关于未知数的整式的方程,称为整式方程,如:我们学习过的一元一次方程,二元一次方程等都是整式方程.这三个方程还都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程我们叫做一元二次方程(quadratic equatton with one unknown),即只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.任何一个关于x的一元二次方程都可以化为ax2+bx++c=0(a≠0)的形式,其中a≠0是定义的一部分,不可漏掉,否则就不是一元二次方程了. Ⅲ.应用、深化 课本P44随堂练习1、2 课本P44习题2.1 1、2 Ⅳ.课时小结 本节课我们由讨论“花边有多宽”得出一元二次方程的概念. 1.一元二次方程属于“整式方程”,其次,它只含有一个未知数,并且都可以化为 ax2+bx+c=0(a、b、c为常数,a≠0)的形式. 2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据它的一般形式定义的,这与多项式中的项、次数及其系数的定义是一致的. Ⅴ.课后作业 作业本( ) Ⅵ.活动与探究 当d、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当a、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程? max.book118.com 花边有多宽(一) 例1方程 例2方程 例3方程 一元二次方程的定义 活动与探究 教学反思 ____________________________________________________________________________ ____________________________________________________________________________ ____________________________________________________________________________ 南苑中学教师备课笔记 课 题 §max.book118.com 花边有多宽 第2课时 共2课时 教 学 目 标 1、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力; 2、渗透“夹逼”思想。 重 点 用“夹逼”方法估算方程的解;求一元二次方程的近似解。 难 点 用“夹逼”方法估算方程的解;求一元二次方程的近似解。 教具准备 施教时间 2006年 月 日 教学过程: 一、复习: 1、什么叫一元二次方程?它的一般形式是什么?一般形式:ax2+bx+c-0(a≠0) 2、指出下列方程的二次项系数,一次项系数及常数项。 (1)2x2―x+1=0 (2)―x2+1=0 (3)x2―x=0 (4)―x2=0 二、新授: 1、估算地毯花边的宽。 地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18 也就是:2x2―13x+11=0 你能求出x吗? (1)x可能小于0吗?说说你的理由;x不可能小于0,因为x表示地毯的宽度。 (2)x可能大于4吗?可能大于2.5吗?为什么? x不可能大于4,也不可能大于2.5, x 45―2x 0 , x 2.5 5―2x 0. (3)完成下表 x 0 0.5 1 1.5 2 2.5 2x2―13x+11 从左至右分别11,4.75,0,―4,―7,―9 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。 地毯花边1米,另,因8―2x比5―2x多3,将18分解为6×3,8―2x=6,x=1 2、例题讲析: 例:梯子底端滑动的距离x(m)满足(x+6)2+72=102 也就是x2+12x―15=0 (1)你能猜出滑动距离x(m)的大致范围吗? (2)x的整数部分是几?十分位是几? x 0 0.5 1 1.5 2 x2+12x―15 -15 -8.75 -2 5.25 13 所以1 x 1.5 进一步计算 x 1.1 1.2 1.3 1.4 x2+12x―15 -0.59 0.84 2.29 3.76 所以1.1 x 1.2 因此x 的整数部分是1,1 注意:(1)估算的精度不适过高。(2)计算时提倡使用计算器。 三、巩固练习: P47,随堂练习1 ; P47,习题2.2:1、2 四、小结: 估计方程的近似解可用列表法求,估算的精度不要求很高。 五、作业:作业本( ) 板书设计 §max.book118.com 花边有多宽 引例 例题 随堂练习 教学反思 ____________________________________________________________________________ ____________________________________________________________________________ ____________________________________________________________________________ 南苑中学教师备课笔记 课 题 §2.2 配方法(1) 第3课时 共1课时 教 学 目 标 1、会用开平方法解形如(x+m)2=n (n≥0)的方程; 2、理解配方法,会用配方法解简单的数字系数的一元二次方程; 3、体会转化的数学思想,用配方法解一元二次方程的过程。 重 点 利用配方法解一元二次方程 难 点 把一元二次方程通过配方转化为(x十m)2=n(n0)的形式. 教具准备 施教时间 2006年 月 日 教学过程: 一、复习: 1、解下列方程: (1)x2=9 (2)(x+2)2=16 2、什么是完全平方式? 利用公式计算: (1)(x+6)2 (2)(x-)2 注意:它们的常数项等于一次项系数一半的平方。 3、解方程:(梯子滑动问题) x2+12x-15=0 二、新授: 1、引入:像上面第3题,我们解方程会有困难,是否将方程转化为第1题的方程的形式呢? 2、解方程的基本思路(配方法) 如:x2+12x-15=0 转化为 (x+6)2=51 两边开平方,得 x+6=± ∴x1=―6 x2=――6(不合实际) 因此,解一元二次方程的基本思路是将方程转化为(x+m)2=n 的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0 时,两边开平方便可求出它的根。 3、配方:填上适当的数,使下列等式成立: (1)x2+12x+ =(x+6)2 (2)x2―12x+ =(x―)2 (3)x2+8x+ =(x+)2 从上可知:常数项配上一次项系数的一半的平方。 4、讲解例题: 例1:解方程:x2+8x―9=0 分析:先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解。 解:移项,得:x2+8x=9 配方,得:x2+8x+42=9+42 ,(两边同时加上一次项系数一半的平方) 即:(x+4)2=25 开平方,得:x+4=±5 即:x+4=5 ,或x+4=―5 所以:x1=1,x2=―9 5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。 三、巩固练习: P50,
北师大_一元二次方程 课件.doc
下载此电子书资料需要扣除0点,