北师大版初中数学定理知识点汇总[九年级(册)※一. 正切在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比③tanA不表示“tan”乘以“A”④初中阶段,我们只学习直角三角形中,∠A是锐角的正切⑤tanA的值越大,梯子越陡,∠A越大; ∠A越大,梯子越陡,tanA的值越大。 ※正弦在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作A,即※三. 余弦在Rt△ABC中,锐角∠A的边与斜边的比叫做∠A的弦,记作A,即※余切: 定义:在Rt△ABC中,锐角∠A的边与边的比叫做∠A的,记作A,即※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。 0o 30 o 45 o 60 o 90 o sinα 0 1 cosα 1 0 tanα 0 1 — cotα — 1 0 (通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则 ①; ②; ※当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角 ※当从高处观测低处的目标时,视线与水平线所成 的锐角称为俯角 ※利用特殊角的三角函数值表,可以看出,(1)当 角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。(2)0≤sinα≤1,0≤cosα≤1。 ※同角的三角函数间的关系: 倒数关系:tgα·ctgα=1。 ※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。 ◎在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有 (1)三边之间的关系:a2+b2=c2; (2)两锐角的关系:∠A+∠B=90°; (3)边与角之间的关系: (4)面积公式:(hc为C边上的高); (5)直角三角形的内切圆半径 (6)直角三角形的外接圆半径 ◎解直角三角形的几种基本类型列表如下: ◎解直角三角形的几种基本类型列表如下: ※ 如图2,坡面与水平面的夹角叫做坡角 (或叫做坡比)。用字母i表示,即 ◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC的方位角分别为45°、135°、225°。 ◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。 第二章 二次函数 ※二次函数的概念:形如的函数,叫做x的二次函数。自变量的取值范围是全体实数。 是二次函数的特例,此时常数b=c=0. ※在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围。 ※二次函数y=ax2的图象是一条顶点在原点关于y轴对称的曲线,这条曲线叫做抛物线。 描述抛物线常从开口方向、对称性、y随x的变化情况、抛物线的最高(或最低)点、抛物线与x轴的交点等方面来描述。 ①函数的定义域是全体实数; ②抛物线的顶点在(0,0),对称轴是y轴(或称直线x=0)。 ③当a>0时,抛物线开口向上,并且向上方无限伸展。当a<0时,抛物线开口向下,并且向下方无限伸展。 ④函数的增减性: A、当a>0时 a<0时 ⑤当|a|越大,抛物线开口越小;当|a|越小,抛物线的开口越大。 ⑥最大值或最小值:当a>0,且x=0时函数有最小值,最小值是0;当a<0,且x=0时函数有最大值,最大值是0. ※二次函数的图象是一条顶点在y轴上且与y轴对称的抛物线 ※二次函数的图象是以为对称轴,顶点在(,)的抛物线。(开口方向和大小由a来决定) ※|a|的越大,抛物线的开口程度越小,越靠近对称轴y轴,y随x增长(或下降)速度越快;|a|的越小,抛物线的开口程度越大,越远离对称轴y轴,y随x增长(或下降)速度越慢。 ※二次函数的图象中,a的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c决定抛物线的顶点位置,即抛物线位置的高低。 ※二次函数的图象与y=ax2的图象的关系: 的图象可以由y=ax2的图象平移得到,其步骤如下: ①将配方成的形式;(其中h=,k=)向右(h 0)或向左(h 0)平移|h|个单位,得到y=a(x-h)2的图象; ③再把抛物线向上(k 0)或向下(k 0)平移| k|个单位,便得到的图象。 ※二次函数的性质: 二次函数配方成则抛物线的 ①对称轴:x= ②顶点坐标:(,) ③增减性: 若a 0,则当x 时,y随x的增大而减小;当x 时,y随x的增大而增大。 若a 0,则当x 时,y随x的增大而增大;当x 时,y随x的增大而减小。 ④最值:若a 0,则当x=时,;若a 0,则当x=时, ※画二次函数的图象: 我们可以利用它与函数的关系,平移抛物线而得到,但往往我们采用简化了的描点法----五点法来画二次函数来画二次函数的图象,其步骤如下: ①先找出顶点(,),画出对称轴x=; ②找出图象上关于直线x=对称的四个点(如与坐标的交点等); ③把上述五点连成光滑的曲线。 ¤二次函数的最大值或最小值可以通过将解析式配成y=a(x-h)2+k的形式求得,也可以借助图象观察。 ¤解决最大(小)值问题的基本思路是: ①理解问题; ②分析问题中的变量和常量,以及它们之间的关系; ③用数学的方式表示它们之间的关系; ④做数学求解; ⑤检验结果的合理性、拓展性等。 ※二次函数的图象(抛物线)与x轴的两个交点的横坐标x1,x2是对应一元二次方程的两个实数根 ※抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定: 0 === 抛物线与x轴有2个交点; =0 === 抛物线与x轴有1个交点; 0 === 抛物线与x轴有0个交点(无交点); ※当 0时,设抛物线与x轴的两个交点为A、B,则这两个点之间的距离: 化简后即为: ------ 这就是抛物线与x轴的两交点之间的距离公式。 第三章 圆 一. 车轮为什么做成圆形 ※1. 圆的定义: 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆;固定的端点O叫做圆心;线段OA叫做半径;以点O为圆心的圆,记作⊙O,读作“圆O” 集合性定义:圆是平面内到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。 对圆的定义的理解:①圆是一条封闭曲线,不是圆面; ②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。 ※2. 点与圆的位置关系及其数量特征: 如果圆的半径为r,点到圆心的距离为d,则 ①点在圆上 === d=r; ②点在圆内 === d r; ③点在圆外 === d r. 其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。 二. 圆的对称性: ※1. 与圆相关的概念: ①弦和直径: 弦:连接圆上任意两点的线段叫做弦。 直径:经过圆心的弦叫做直径。 ②弧、半圆、优弧、劣弧: 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。 半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。 优弧:大于半圆的弧叫做优弧。 劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。) ③弓形:弦及所对的弧组成的图形叫做弓形。 ④同心圆:圆心相同,半径不等的两个圆叫做同心圆。 ⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。 ⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 ⑦圆心角:顶点在圆心的角叫做圆心角. ⑧弦心距:从圆心到弦的距离叫做弦心距. ※2. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。 ※3. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备: ①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。 上述五个条件中的任何两个条件都可推出其他三个结论。 ※4. 定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。 推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等. 三. 圆周角和圆心角的关系: ※1. 1°的弧的概念: 把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧. ※2. 圆心角的度数和它所对的弧的度数相等. 这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成∠AOB= ,这
北师大版初中数学定理知识点汇总(九下).doc
下载此电子书资料需要扣除0点,