首 页 - ┆ 小小说社会科学搜榜改进建议哲学宗教政治法律文化科教语言文字医学管理资源艺术资料数理化天文地球专业技术教育资源建筑房地产
当前位置:e书联盟 > 教育资源 > 小学初中 > 初中数学
乌鲁木齐13中九年级数学全册教案.doc
运行环境:Win9X/Win2000/WinXP/Win2003/
教育语言:简体中文
教育类型:国产软件 - 小学初中 - 初中数学
授权方式:共享版
教育大小:875 KB
推荐星级:
更新时间:2012-04-02 09:30:27
联系方式:暂无联系方式
官方主页:Home Page
解压密码:点击这里
  • 好的评价 此教育真真棒!就请您
      0%(0)
  • 差的评价 此教育真差劲!就请您
      0%(0)

乌鲁木齐13中九年级数学全册教案.doc介绍

乌鲁木齐13中九年级数学全册教案
反比例函数
教学目标:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
教学程序:
一、导入:
   1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。
   2、U=IR,当U=220V时,
  (1)你能用含R的代数式表示I吗?
  (2)利用写出的关系式完成下表:
R(Ω)	20	40	60	80	100		I(A)							当R越来越大时,I怎样变化?
当R越来越小呢?
(3)变量I是R的函数吗?为什么?
答:① I = 
②	 当R越来越大时,I越来越小,当R越来越小时,I越来越大。
③变量I是R的函数。当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数。
二、新授:
1、反比例函数的概念
   一般地,如果两个变量x, y之间的关系可以表示成 y=(k为常数,k≠0)的形式,那么称y是x的反比例函数。
   反比例函数的自变量x 不能为零。
2、做一做
   一个矩形的面积为20cm2,相邻两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?
解:y= ,是反比例函数。
三、课堂练习:
  P133,12
四、作业:
P133,习题5.1  1、2题
反比例函数的图象与性质
教学目标:使学生会作反比例函数的图象,并能理解反比例函数的性质。培养提高学生的计算能力和作图能力。
教学重点、难点:作反比例函数的图象。理解反比例函数的性质。
教学程序:
一、复习:
   1、函数有哪几种表示方法?
答:图象法、解析法、列表法
   2、一次函数y=kx+b有什么性质?
答:一次函数y=kx+1的图象是一条直线。
当k 0时,y随x的增大而增大;当k 0时,y随x的增大而减小。
二、新授:
   1、作反比例函数y=的图象:
列表:
X	-8	-4	-3	-2	-1	-	-	1	2	4	8		y=													
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:用光滑的曲线顺次连结各点,即可得到函数y=的图象。
2、你认为作反比例函数图象时应注意哪些问题?
列表时,自变量的值可以选取绝对值相等而符号相反的一对一对的数值,这样既可简化计算,又便于描点。
3、作反比例函数y=的图象。
4、观察函数y=和y=的图象,它们有什么相同点和不同点?
图象分别都是由两支曲线组成的,它们都不与坐标轴相交,两个函数图象都是轴对称图形,它们各自都有两条对称轴。
5、反比例函数y=的图象是由两支曲线组成的,当k 0时,两支曲线分别位于一、三象限内,当k 0 时,两支曲线分别位于第二、四象限内。
三、随堂练习
P136:1、2
四、作业:P137 习题5.2  1
反比例函数的图象与性质
知识目标:使学生理解反比例函数y=(k≠0)的增减性质。培养、提高学生的空间想象能力。
教学难点:反比例函数的对称性质
教学程序:
一、新授:
1、观察反比例函数y=,y=,y=的图象,回答下列问题?
(1)函数图象分别位于哪几个象限内;
(2)在每一个象限内,随着x 值的增大,y的值怎样变化的?能说明这是为什么吗?
(3)反比例函数的图象可能与x 轴相交吗?可能与y轴相交吗?为什么?
答:(1)第一、三象限
   (2)y的值随着x 值的增大而减小;
   (3)不可能与x轴相交,也不可能与y轴相交,因为x≠0,所以图象与y轴不可能有交点,因为不论x取何实数值,y的值永不为0(因k≠0)所以图象与x 轴不可能有交点。
2、考察当k=―2,―4,―6时,反比例函数y=的图象,回答(1)中的三个问题。
3、反比例函数图象的性质:
反比例函数y= 的图象,当k 0时,在第一象限内,y的值随x 的增大而减小;当k 0时,在每一象限内,y的值随x 的增大而增大。
4、在一个反比例函数图象上任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1,过点Q分别作x轴,y轴的平行线,与坐标轴围成的面积为S2,S1与S2有什么关系?为什么?
S1=S2= | K |
5、将反比例函数的图象绕原点旋转180°后,能与原来的图象重合吗?
反比例函数的图象是一个以原点为中心的中心对称图形;
反比例函数是一个以y=±x 为对称轴的轴对称图形。
二、随堂练习:P139  1、2
三、作业:P141  习题5.3   1、2
反比例函数的应用
教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。
教学重点:反比例函数的应用
教学程序:
一、新授:
1、实例1:(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?
答:P=(s 0),P是S的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:P=3000Pa
(3)、如果要求压强不超过6000Pa,木板的面积至少要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压U=36V , I=
2、完成下表,并回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
R(Ω)	3	4	5	6	7	8	9	10		I(A)										3、如图5-9,正比例函数y=k1x的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(,2)
(1)分别写出这两个函数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;
二、随堂练习:
P145~146  1、2、3、4、5
三、作业:P146 习题5.4  1、2
花边有多宽
教学目标:
1、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
2、渗透“夹逼”思想
教学重点难点:用“夹逼”方法估算方程的解;求一元二次方程的近似解。
教学方法:讲授法
教学用具:幻灯机
教学程序:
一、复习:
1、什么叫一元二次方程?它的一般形式是什么?一般形式:ax2+bx+c-0(a≠0)
2、指出下列方程的二次项系数,一次项系数及常数项。
(1)2x2―x+1=0		(2)―x2+1=0		(3)x2―x=0		(4)―x2=0
二、新授:
1、估算地毯花边的宽。
地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18
也就是:2x2―13x+11=0
你能求出x吗?
(1)x可能小于0吗?说说你的理由;x不可能小于0,因为x表示地毯的宽度。
(2)x可能大于4吗?可能大于2.5吗?为什么?
x不可能大于4,也不可能大于2.5, x 4时,5―2x 0 , x 2.5时, 5―2x 0.
(3)完成下表
x	0	0.5	1	1.5	2	2.5		2x2―13x+11								从左至右分别11,4.75,0,―4,―7,―9
(4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。
地毯花边1米,另,因8―2x比5―2x多3,将18分解为6×3,8―2x=6,x=1
2、例题讲析:
例:梯子底端滑动的距离x(m)满足(x+6)2+72=102
也就是x2+12x―15=0
(1)你能猜出滑动距离x(m)的大致范围吗?
(2)x的整数部分是几?十分位是几?
x	0	0.5	1	1.5	2		x2+12x―15	-15	-8.75	-2	5.25	13		所以1 x 1.5
进一步计算
x	1.1	1.2	1.3	1.4		x2+12x―15	-0.59	0.84	2.29	3.76		所以1.1 x 1.2
因此x 的整数部分是1,十分位是1
注意:(1)估算的精度不适过高。(2)计算时提倡使用计算器。
三、巩固练习:P47,随堂练习1
四、小结:估计方程的近似解可用列表法求,估算的精度不要求很高。
五、作业:P47,习题2.2:1、2
九年级上期数学教案
直角三角形(第一课时)
教学目标:
1、进一步掌握推理证明的方法,发展演绎推理能力。
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。
3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:
引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,
延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。
∴四边形ACDE是直角梯形。
∴S梯形ACDE =(a+b)(a-b)= (a+b)2
∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90°
AB=BE
∴S△ABC = c2
∵S梯形ACDE = S△ABE +S△ABC+ S△BED , 
∴(a+b)2=c2+ab+ab		即a2+ab
乌鲁木齐13中九年级数学全册教案.doc

下载此电子书资料需要扣除0点,

电子书评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论

下载说明

* 即日起,本站所有电子书免费、无限量下载下载,去掉了每日50个下载的限制
* 本站尽量竭尽努力将电子书《乌鲁木齐13中九年级数学全册教案.doc》提供的版本是完整的,全集下载
* 本站站内提供的所有电子书、E书均是由网上搜集,若侵犯了你的版权利益,敬请来信通知我们!

本类热门下载

Copyright © 2005-2020 www.book118.com. All Rights Reserved