2011年中考复习一次函数应用专题 1.某县政府打算用25000元用于为某乡福利院购买每台价格为2000元的彩电和每台价格为1800元的冰箱,并计划恰好全部用完此款. (1)问原计划所购买的彩电和冰箱各多少台? (2)由于国家出台“家电下乡”惠农政策,该县政府购买的彩电和冰箱可获得13%的财政补贴,若在不增加县政府实际负担的情况下,能否多购买两台冰箱?谈谈你的想法. 解:(1)设原计划购买彩电台,冰箱台,根据题意,得 化简得: 由于均为正整数,解得 (2)该批家电可获财政补贴为 由于多买的冰箱也可获得13%的财政补贴,实际负担为总价的87%. ∴可多买两台冰箱.答:(1)原计划购买彩电8台和冰箱5台; (2)能多购买两台冰箱.我的想法:可以拿财政补贴款3250元,再借350元,先购买两台冰箱回来,再从总价3600元冰箱的财政补贴468元中拿出350元用于归还借款,这样不会增加实际负担. 2.已知某种水果的批发单价与批发量的函数关系如图(1)所示..(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果..20kg且不多于60kg的该种水果,可按5元/kg批发; 图②表示批发量高于60kg的该种水果,可按4元/kg批发.,函数图象如图所示.w≤300时,以同样的资金可 批发到较多数量的该种水果. 当m>60时,x<6.5 由题意,销售利润为 当x=6时,,此时m=80 即经销商应批发80kg该种水果,日零售价定为6元/kg, 当日可获得最大利润160元.60) 则由图②日零售价p满足:,于是 销售利润 当x=80时,,此时p=6 即经销商应批发80kg该种水果,日零售价定为6元/kg, 当日可获得最大利润160元.3.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a的值. (2)求售票到第60分钟时,售票听排队等候购票的旅客人数. (3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口? 【答案】(1)由图象知,,所以; (2)设BC的解析式为,则把(40,320)和(104,0)代入,得,解得,因此,当时,,即售票到第60分钟时,售票厅排队等候购票的旅客有220人; (3)设同时开放个窗口,则由题知,解得,因为为整数,所以,即至少需要同时开放6个售票窗口。 4.(2010山东泰安)某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙厂提出:每份材料收2元印制费,不收制版费. (1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数关系式; (2)电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制的宣传材料能多一些? (3)印刷数量在什么范围时,在甲厂的印制合算? 【答案】解:(1)甲厂的收费y(元)与印制数量x(份)之间的函数关系式为 y=x+1000 乙厂的收费y(元)与印制数量x(份)之间的函数关系式为 y=2x (2)根据题意: 若找甲厂印制,可以印制的份数x满足3000=x+1000得x=2000 若找乙厂印制,可以印制的份数x满足3000=2x得x=1500 又2000 1500 ∴找甲厂印制的宣传材料多一些. (3)根据题意可得x+1000 1000 当印制数量大于1000份时,在甲厂印刷合算. 解得 答:应安排4天进行精加工,8天进行粗加工. ⑵①精加工m吨,则粗加工(140-m)吨,根据题意得: W=2000m+1000(140-m) =1000m+140000 . ②∵要求在不超过10天的时间内将所有蔬菜加工完, ∴+≤10 解得 m≤5. ∴0<m≤5. 又∵在一次函数W=1000m+140000中,k=1000>0, ∴W随m的增大而增大, ∴当m=5时,Wmax=1000×5+140000=145000. ∴精加工天数为5÷5=1, 粗加工天数为(140-5)÷15=9. ∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元. 6.(2010 广东汕头)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案; (2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省? 【答案】 解之得 ∵x是整数 ∴x=4、5、6、7 ∴所有可行的租车方案共有四种:①甲车4辆、乙车6辆;②甲车5辆、乙车5辆;③甲车6辆、乙车4辆;④甲车7辆、乙车3辆. (2)设租车的总费用为y元,则y=2000x+1800(10-x), 即y=200x+18000 ∵k=200>0, ∴y随x的增大而增大 ∵x=4、5、6、7 ∴x=4时,y有最小值为18800元,即租用甲车4辆、乙车6辆,费用最省. 7.(2010 云南玉溪)某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售. ⑴ 分别写出到甲、乙商店购买该种铂金饰品所需费用(元)和重量(克)之间的函数关系式; ⑵ 李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算? 【答案】解:(1)y甲=477x. y乙=530×3+530(x-3)·80%=424x+318. (2)由y甲= y乙 得 477x=424x+318, ∴ x=6 . 由y甲﹥y乙 得 477x﹥424x+318 ,则 x﹥6. 由y甲﹤y乙 得 477x﹤424x+318, 则 x﹤6. 所以当x=6时,到甲、乙两个商店购买费用相同. 当4≤x﹤6时,到甲商店购买合算. 当6﹤x≤10时,到乙商店购买合算. 8.(2010湖北十堰)如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x + 70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量. 【答案】, 当y1=y2时,即-x+70=2x-38 ∴3x=108,∴x=36 当x=36时,y1=y2=34,所以该药品的稳定价格为36元/件,稳定需求量为34万件. (2)令y1=0,得x=70,由图象可知,当药品每件价格在大于36元小于70元时,该药品的需求量低于供应量. (3)设政府对该药品每件价格补贴a元,则有 ,解得 所以政府部门对该药品每件应补贴9元. 9.(2010 广西玉林、防城港)玉柴一分厂计划一个月(按30天计)内生产柴油机500台。 (1)若只生产一种型号柴油机,并且每天生产量相同,按原先的生产速度,不能完成任务;如果每天比原先多生产1台,就提前完成任务。问原先每天生产多少台? (2)若生产甲、乙两种型号柴油机,并且根据市场供求情况确定;乙型号产量不超过甲型号产量的3倍。已知:甲型号出厂价2万元,乙型号出厂价5万元,求总产值w最大是多少万元。 【答案】 解得 因x是正整数,所以x=16 答:略 (2)设甲型号机为m台,则乙型号机为500-m,且有500-m3m m≥125 而w=2m+3(500-m)=-m+1500 因为一次函数的一次项系数为负,故w随m的增大而减少,故当m=125时,w的值最大,最大值是-125+1500=1250万元 答:略 10.(2010广西南宁)2010年1月1日,全球第三大自贸区——中国—东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240吨白砂糖运往东盟某国的、两地,先用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往地的运费为:大车630元/辆,小车420元/辆;运往地的运费为:大车750元/辆,小车550元/辆. (1)求两种货车各用多少辆; (2)如果安排10辆货车前往地,其余货车前往地,且运往地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费. 【答案】解:(1)解法一:设大车用辆,小车用辆.依据题意,得
2011年中考复习一次函数应用专题.doc
下载此电子书资料需要扣除0点,