2009年全国各地中考数学压轴题专集 索 引 1.北京市 1 2.北京市 1 3.天津市 1 4.天津市 2 5.上海市 2 6.上海市 3 7.重庆市 3 8.重庆市江津区贵州省黔东南州贵州省黔南州州平凉市146.广西钦州市 156...170.湖北省武汉市新洲区湖北省武汉市新洲区..湖北省襄樊市......203.四川省攀枝花市205.四川省遂宁市 72 206.四川省遂宁市 73 207.四川省内江市 73 208.四川省巴中市 73 209.210.初中毕业班质量检查212...223.莆田市初中毕业班质量检查莆田市初中毕业班质量检查226.227.福建省初中毕业班质量检查228.229.230.福建省231.232.,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围. 2.(北京市)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0), C(0,),延长AC到点D,使CD=AC,过D点作DE∥AB交BC的延长线于点E. (1)求D点的坐标; (2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式; (3)设G为轴上一点,点P从直线y=kx+b与轴的交点出发,先沿轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明) 3.(天津市)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定的取值范围; (Ⅲ)若折叠后点B落在边OA上的点为B′′,且使B′′D∥OB,求此时点C的坐标. 4.(天津市)已知函数y1=x,y2=x 2+bx+c,α,β为方程y1-y2=0的两个根,点M(1,T)在函数y2的图象上. (Ⅰ)若α=,β=,求函数y2的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为时,求t的值; (Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由. 5.(上海市)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥轴(如图所示).为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标; (2)设点P在轴的正半轴上,若△POD是等腰三角形,求点P的坐标; (3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径. 6.(上海市)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足=(如图1所示). (1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长; (2)在图1中,联结AP.当AD=,且点Q在线段AB上时,设点B、Q之间的距离为x,=y,其中表示△APQ的面积,表示△PBCAD < AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小. 7.(重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA2,OC3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式; (2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF2GO是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由. 8.(重庆市江津区)如图,抛物线与x轴交A(1,0),B(-3,0)两点.(1)求该抛物线的解析式; (2设(1)中的抛物线交y轴C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由(3)在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值若不存在,请说明理由. 9.(重庆市綦江县)如图,已知抛物线y=a(x-1)2+(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.轴的直线交射线OM于点C,B在轴正半轴上,连结BC. (1)求该抛物线的解析式; (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. 10.(江苏省)如图,已知二次函数y=x 2-2x-1的图象的顶点为A,二次函数y=ax 2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x 2-2x-1的图象的对称轴上. (1)求点A与点C的坐标; (2)当四边形AOBC为菱形时,求函数y=ax 2+bx的关系式. 11.(江苏省)如图,已知射线DE与x轴和轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒. (1)请用含t的代数式分别表示出点C与点P的坐标; (2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB. ① 当⊙C与射线DE有公共点时,求t的取值范围; ② 当△PAB为等腰三角形时,求t的值. 12.(浙江省杭州市)已知平行于x轴的直线与函数和函数的图象分别交于点A和点B,又有定点P2,0 (1)若,且tan∠POB,求线段AB的长; (2)在过A,B两点且顶点在直线上的抛物线中,已知线段AB,且在它的对称轴左边时,随着的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A,B,P三点的抛物线,平移后能得到x 2的图象,求点P到直线AB的距离x+1交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E. (1)请直接写出点C,D的坐标; (2)求抛物线的解析式; (3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围; (4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D落在x轴上时停止,求抛物线上C、E两点间的抛物线弧所扫过的面积. 14.(浙江省温州市)如图,在平面直角坐标系中,点A,0,B,2,0,2.动点D以每秒1个单位的速度从点出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EFAB,交BC于点F,连结DA、DF.设运动时间为t秒. (1)求∠ABC的度数; (2)当t为何值时,AB∥DF; (3)设四边形AEFD的面积为S.①求S关于t的函数关系式;②若一抛物线经过动点E,当S2时,求m的取值范围写出答案即可. x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.轴翻折,若点N的对应点N ′恰好落在抛物线上,AN ′与轴交于点D,连结CD,求a的值和四边形ADCN的面积; (3)在抛物线y=x 2-2x+a(a <0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点. ① 当抛物线向左平移到某个位置时,A′C+CB ′最短,求此时抛物线的函数解析式; ② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由. 17.(浙江省宁波市)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(8,0),直线BC经过点B(8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q. (1)四边形OABC的形状是_______________, 当α90°时,的值是____________; (2)①如图2当四边形OA′B′C′的顶点B′
2009年全国各地中考数学压轴题专集(最齐全的试题、最精确的绘图、最完美的排版).doc
下载此电子书资料需要扣除0点,