切 线 的 判 定 复 习 1.直线和圆有哪些位置关系? 2.什么叫相切? 3.我们学习过哪些切线的判断方法? 想一想 判 断 1. 过半径的外端的直线是圆的切线( ) 2. 与半径垂直的的直线是圆的切线( ) 3. 过半径的端点与半径垂直的直线是圆的切线( ) 想一想 〖例1〗 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。 求证:直线AB是⊙O的切线。 〖例2〗 小 结 例1与例2的证法有何不同? (1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简记为:连半径,证垂直。 (2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂线段长等于半径长。简记为:作垂直,证半径。 练 习 * * 直线和圆的位置关系有几种? 知识回顾 ⑴ 相 离; ⑵ 相 切; ⑶ 相 交; d r d=r d r 用数量关系如何来判断? .O l ┐ d r .O l ┐ d r .O l ┐ d r 过圆0内一点作直线,这条直线与圆有什么位置关系?过半径OA上一点(A除外)能作圆O的切线吗?过点A呢? O r l A 切线的判定定理 经过半径的外端并且垂直于这 条半径的直线是圆的切线。 ∵ OA是半径,OA⊥l于A ∴ l是⊙O的切线。 几何符号表达: × × × O r l A O r l A O r l A 利用判定定理时,要注意直线须具备以下两个条件,缺一不可: (1)直线经过半径的外端; (2)直线与这半径垂直。 判断一条直线是圆的切线,你现在会有多少种方法? 有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的直线是圆的切线。 2.利用d与r的关系作判断:当d=r时直线是圆的切线。 3.利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 O B A C 分析:由于AB过⊙O上的点C,所以连接OC,只要证明 AB⊥OC即可。 证明:连结OC(如图)。 ∵ OA=OB,CA=CB, ∴ OC是等腰三角形OAB底边AB上的中线。 ∴ AB⊥OC。 ∵ OC是⊙O的半径 ∴ AB是⊙O的切线。 已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为 半径作⊙O。 求证:⊙O与AC相切。 O A B C E D 证明:过O作OE⊥AC于E。 ∵ AO平分∠BAC,OD⊥AB ∴ OE=OD ∵ OD是⊙O的半径 ∴ AC是⊙O的切线。 O B A C O A B C E D 如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心, 5为半径的⊙O与OA、OB相交。 求证:AB是⊙O的切线。 O B A C 证明:连结OP。 ∵AB=AC,∴∠B=∠C。 ∵OB=OP,∴∠B=∠OPB, ∴∠OPB=∠C。 ∴OP∥AC。 ∵PE⊥AC, ∴PE⊥OP。 ∴PE为⊙0的切线。 如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E。 求证:PE是⊙O的切线。 练 习 O A B C E P 练习3、如图4,AB是⊙O的直径,∠ABC=45°,AC=AB,AC是⊙O的切线吗?为什么? 图5 练习4、如图5,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B = 30°,边BD交圆于点D。BD是⊙O的切线吗?为什么? 例3、如图7,已知△ABC内接于⊙O,P是CB延长线上的一点,连结AP,且AP2 = PB·PC,试说明PA是⊙O的切线。 课堂小结 1. 判定切线的方法有哪些? 直线l 与圆有唯一公共点 与圆心的距离等于圆的半径 经过半径外端且垂直这条半径 l是圆的切线 2. 常用的添辅助线方法? ⑴直线与圆的公共点已知时,作出过公共点的半径,再证半径垂直于该直线。(连半径,证垂直) ⑵直线与圆的公共点不确定时,过圆心作直线的垂线段,再证明这条垂线段等于圆的半径。(作垂直,证半径) l是圆的切线 l是圆的切线 *
切线的判定2.ppt
下载此电子书资料需要扣除0点,