第23章 等腰三角形 一、选择题 1. (2011浙江省,7,3分)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为( ) (A) (B) (C) (D) 【答案】B 2. 如图,⊿ABC和⊿CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S⊿ABC+S⊿CDE≧S⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是( ) (A)1个(B)2个(C)3个(D)4个 【答案】D 3. (2011浙江义乌,10,3分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°, 四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交 CE于点G,连结BE. 下列结论中: ① CE=BD; ② △ADC是等腰直角三角形; ③ ∠ADB=∠AEB; ④ CD·AE=EF·CG; 一定正确的结论有 A.1个 B.2个 C.3个 D.4个 【答案】 4. (2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,长为半径画弧,分别交、 于D、E两点,并连接、.若∠A=30°,=,则∠BDE的度数为何? A. 45 B. 52.5 C. 67.5 D. 75 【答案】C 5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何? A.2:1 B. 3:2 C. 4:3 D. 5:4 【答案】C 6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是 A.15cm B.16cm C.17cm D.16cm或17cm 【答案】D 7. 中,,,点 为的中点,,垂足为点,则等于( ) A. B. C. D. 【答案】 1. (2011山东滨州,15,4分)边长为6cm的等边三角形中,其一边上高的长度为________. 【答案】cm 2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或6 3. (2011浙江杭州16,4)在等腰R△ABC中,∠C=90°,AC=1,过点C作直线∥AB,F是上的一点,且AB=AF,则点F到直线BC的距离为 . 【答案】 4. 【答案】80o 5. (2011浙江省嘉兴,14,5分)如图,在△ABC中,AB=AC,,则△ABC的外角∠BCD= . 【答案】110 6. 【答案】 7. (2011山东济宁,15,3分)如图,等边三角形ABC中,D、E分别为AB、BC边上的两个动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则 . 【答案】 8. 如图6,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=__________________. 【答案】4 9. 如图,已知∠AOB=,在射线OA、OB上分别取点OA=OB,连结AB,在BA、BB上分别取点A、B,使B B= B A,连结A B…按此规律上去,记∠A B B=,∠,…,∠ 则= ; = 。 【答案】⑴ 10.(2011湖南邵阳,11,3分)如图(四)所示,在△ABC中,AB=AC,∠B=50°,则∠A=_______。 【答案】 11. (2011贵州贵阳,15,4分)如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为______. (第15题图) 【答案】 12. (2011广东茂名,14,3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度. 【答案】15 三、解答题 1. (2011广东东莞,21,9分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2). (1)问:始终与△AGC相似的三角形有 及 ; (2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由); (3)问:当x为何值时,△AGH是等腰三角形? 【解】,即, 所以, (3)当CG<时,∠GAC=∠H<∠HAC,∴AC<CH ∵AG<AC,∴AG<GH 又AH>AG,AH>GH 此时,△AGH不可能是等腰三角形; 当CG=时,G为BC的中点,H与C重合,△AGH是等腰三角形; 此时,GC=,即x= 当CG>时,由(1)可知△AGC∽△HGA 所以,若△AGH必是等腰三角形,只可能存在AG=AH 若AG=AH,则AC=CG,此时x=9 综上,当x=9或时,△AGH是等腰三角形. 2. (2011山东德州19,8分)如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O. (1)求证AD=AE;(2) 连接OAOA,BC的关系并说明理由. (1)证明:在△ACD与△ABE中 ∴ △ACD≌△ABE.…………………… 分 ∴ AD=AE. ……………………4分 (2) 互相垂直 ……………………5分在△ADO与△A中, AD=AE,∴ △ADO≌△AEO.……………………………………6分 ∴ ∠AO=∠EAO. 即OA是∠BAC的平分线.………………………………………7分 ∴ OA⊥BC. ………………………………………8分 3. 如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA. (1)求证:DE平分∠BDC; (2)若点M在DE上,且DC=DM,求证: ME=BD 【答案】(1)在等腰直角△ABC中, ∵∠CAD=∠CBD=15o, ∴∠BAD=∠ABD=45o-15o=30o, ∴BD=AD,△BDC≌△ADC, ∠DCA=∠DCB=45o. 由∠BDM=∠ABD+∠BAD=30o+30o=60o, ∠EDC=∠DAC+∠DCA=15o+45o=60o, ∴∠BDM=∠EDC, ∴DE平分∠BDC; (2)∵DC=DM,且∠MDC=60°, ∴△MDC是等边三角形,即CM=CD. 又∵∠EMC=180°-∠DMC=180°-60°=120°, ∠ADC=180°-∠MDC=180°-60°=120°, ∴∠EMC=∠ADC. 又∵CE=CA, ∴∠DAC=∠CEM=15,∴△ADC≌△EMC,∴ME=AD=DB. 4. (2011湖北鄂州,18,7分)如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长. 【答案】 5. (2011浙江衢州,23,10分)是一张等腰直角三角形纸板,. 要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由. 图1中甲种剪法称为第1次剪取,记所得的正方形面积为;按照甲种剪法,在余下的中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为(如图2),则 ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为(如图3);继续操作下去…则第10次剪取时, . 求第10次剪取后,余下的所有小三角形的面积和. .如图乙,设,则由题意,得 又 甲种剪法所得的正方形的面积更大 说明:图甲可另解为:由题意得点D、E、F分别为的中点, 解法2:如图甲,由题意得 如图乙,设 甲种剪法所得的正方形的面积更大 (2) (3) (3)解法1:探索规律可知:‘ 剩余三角形的面积和为: 解法2:由题意可知, 第一次剪取后剩余三角形面积和为 第二次剪取后剩余三角形面积和为 第三次剪取后剩余三角形面积和为 … 第十次剪取后剩余三角形面积和为 6. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论: (填“ ”,“ ”
2011年中考数学试题分类23 等腰三角形.doc
下载此电子书资料需要扣除0点,