首 页 - ┆ 小小说社会科学搜榜改进建议哲学宗教政治法律文化科教语言文字医学管理资源艺术资料数理化天文地球专业技术教育资源建筑房地产
当前位置:e书联盟 > 教育资源 > 小学初中 > 初中数学
初一数学竞赛系列讲座(16)逻辑原理.doc
运行环境:Win9X/Win2000/WinXP/Win2003/
教育语言:简体中文
教育类型:国产软件 - 小学初中 - 初中数学
授权方式:共享版
教育大小:71.0 KB
推荐星级:
更新时间:2012-03-22 09:13:36
联系方式:暂无联系方式
官方主页:Home Page
解压密码:点击这里
  • 好的评价 此教育真真棒!就请您
      100%(1)
  • 差的评价 此教育真差劲!就请您
      0%(0)

初一数学竞赛系列讲座(16)逻辑原理.doc介绍

初一数学竞赛系列讲座(16)
逻辑原理
知识要点
逻辑原理问题,并不需要多少特别专门的知识,关键在于审题,要认真仔细地分析题意,弄清楚各个量之间的关系,深刻理解每句话的含义。
例题精讲
例1 小明、小强、小华三人参加迎春杯赛,他们是来自金城、沙市、水乡的选手,并分别获得一、二、三等奖。现在知道:
小明不是金城的选手;
小强不是沙市的选手;
金城的选手不是一等奖;
沙市的选手得二等奖;
小强不是三等奖。
根据上述情况,小华是        的选手,他得的是       等奖。(第三届迎春杯决赛试题)
分析:显然选手所在城市与选手获奖情况有联系,我们就从这里找突破口,搞清了各个城市的选手分别获得哪等奖,问题就解决了。
解:由(4)知:金城的选手获一等奖或三等奖,又由(3)得金城的选手获三等奖,从而水乡的选手获一等奖。
    由(2)知:小强是金城或水乡的选手,又由(5)得小强是水乡的选手,
    由(1)得小明是沙市的选手,从而小华是金城的选手,他获三等奖。
例2 教室里的椅子坏了,第二天上学时,老师发现椅子修好了。经了解,椅子是A、B、C三人中的一个人修好的,老师找来这三人。
     A说:“是B做的。”
     B说:“不是我做的。”
     C说:“不是我做的。”
     经调查,三人中只有一个说了实话,椅子是谁修的呢?
分析:因为三人中只有一个说了实话,所以可以假设椅子是某人修好的,看结论是否符合“三人中只有一个说了实话”这一条件。
解:(1) 假设椅子是A修好的,那么A说的是假话,B、C说的都是实话。这样有两人说了实话与“三人中只有一个说了实话”这一条件相矛盾,所以椅子不是A修好的。
(2) 假设椅子是B修好的,那么B说的是假话,A、C说的都是实话。这样有两人说了实话与“三人中只有一个说了实话”这一条件相矛盾,所以椅子不是A修好的。
(3) 假设椅子是C修好的,那么A、C说的是假话,B说的是实话,符合“三人中只有一个说了实话”这一条件,所以椅子是C修好的。
评注:本题运用先假设,再根据假设推出一个结论;如果结论与已知条件相矛盾,说明假设不成立;如果结论符合已知条件,说明假设正确。这种假设的方法是逻辑推理中经常使用。
例3 赵、钱、孙、李四人,一个是教师,一个是售货员,一个是工人,一个是个体户,根据以下条件,判断这四人的职业。
赵、钱是邻居,每天一起骑车上班;
赵年龄比孙大;
赵在教李打太极拳;
教师每天步行上班;
售货员的邻居不是个体户;
个体户和工人互不认识;
个体户比售货员和工人年龄都大。
解:由(4)和(1)可知,赵、钱不是教师。由(2)和(7)知,孙不是个体户。因为假设孙是个体户,则由(2)和(7)知,赵不是售货员,不是工人;由(4)和(1)可知,赵也不是教师;这样赵也是个体户,与假设矛盾。于是我们可得出下表:
	售货员	工人	教师	个体户		赵			(			钱			(			孙				(		李						    
假设赵是工人,个体户是钱或李,由(6)可知,赵与钱或李应互不认识,这与(1)、(3)相矛盾,这样可知赵不是工人。
又假设赵是个体户,由(1)、(3)、(6)可知,孙是工人,钱是售货员,但又与(5)矛盾,所以赵是售货员。这样又可得出下表:
	售货员	工人	教师	个体户		赵	√	(	(			钱	(		(			孙	(			(		李	(					
根据(1)、(5)继续分析,把上面的表格填满,可得:钱不是个体户,则钱是工人;则孙不是工人,孙是教师,最后得李是个体户。如下表:
	售货员	工人	教师	个体户		赵	√	(	(	(		钱	(	√	(	(		孙	(	(	√	(		李	(	(	(	√		    
最后得:赵是售货员,钱是工人,孙是教师,李是个体户。
评注:分析逻辑推理问题,借助表格,能使已知条件和推出的有用结论一目了然。在填表时通常把正确的结论打“√”,错误的打“(”。这样可以确保推理的速度和正确性,而且不易被错误信息干扰。
例4今有棋子100颗,甲、乙两人做取棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次取p颗,p为1或20以内的任一质数,不能不取。谁最后取完谁为胜者。问甲、乙两人谁有必胜的策略。
解:乙有必胜的策略。
由于p为1或20以内的任一质数,所以p或者是2,或者可以表示为4 k +1或 4 k +3(k为0或正整数)形式,乙可以采取如下的策略:
若甲取2颗,则乙也取2颗;
若甲取4 k +1颗,则乙取3颗;
若甲取4 k +3颗,则乙取1颗;
这样,每次甲、乙两人取走的棋子之和都是4的倍数。由于100是4的倍数,因此余下的棋子数必定还是4的倍数。从而经过若干回合后,剩下的棋子数必定为不超过20的4的倍数。因为p不是4的倍数,所以这时甲不能取走全部的棋子,从而最终乙可以取走全部的棋子。
评注:本题中,甲虽然先取,但他没有必胜的策略。而乙虽然后取,但他能根据甲的取法,应对有序,后发制人,最终取胜。由此看出,谁能取得最后胜利,一要看他所面临的情形,二要看他采用的策略,两者缺一不可。
例5 有三堆小石子。每次操作从每堆中取走同样数目的小石子(不同次操作,取走的小石子数目可以不同),或将其中任一堆(如果其小石子数是偶数)的一半小石子移到另一堆上。开始时,第一堆有小石子1989块,第二堆有小石子989块,第三堆有小石子89块。能否使 (1) 某两堆小石子一个不剩?   (2) 三堆小石子都一个不剩?(第十五届全俄数学奥林匹克试题)
分析:(1)很容易发现三堆小石子刚开始时的小石子数的末两位数字相同,因而首先三堆各取89块,这样剩下的石子数是:1900、900、0,接下来将第二堆移450块到第三堆,石子数变为:1900、450、450,再接下来三堆各取走450块就可以了。
     (2) 发现最初三堆的石子数的和是:1989+989+89=3067,它不被3整除。而题目中的两种操作方法不改变这个特征,因而可得出结论。
解:(1) 可以使某两堆小石子一个不剩。只要按如下步骤取即可。
       (1989,989,89) ( (1900,900,0) ( (1900,450,450) ( (1450,0,0)
(2) 最初三堆石子的总数是1989+989+89=3067,它不能被3整除。
   而进行任何一次操作后所得的三堆石子的总数被3除所得的余数不变,所以不管进行几次操作,三堆石子的总数被3除所得的余数都不为0,即不可能将三堆石子都取光。
评注:本题第二步中,抓住了三堆石子的总数被3除所得的余数不变这个特征,从而使问题得到顺利解决。因而解题时应认真分析,抓住关键。
例6 人的血型通常为A型、B型、O型、AB型。子女的血型与其父母血型间的关系如下表所示:
父母的血型            子女可能的血型
                 O、O	    O
O、A	A、O
	O、B	         B、O
 	O、AB	         A、B
	A、A	         A、O
	A、B                   A、B、AB、O
	A、AB	              A、B、AB
	B、B	          B、O
	B、AB	               A、B、AB
	AB、AB	               A、B、AB
    现有三个分别身穿红、黄、蓝上衣的孩子,他们的血型依次为O、A、B。每个孩子的父母都戴着同样颜色的帽子,颜色也分别为红、黄、蓝三种,依次表示所具有的血型为AB、A、O。问穿红、黄、蓝上衣的孩子的父母各戴什么颜色的帽子?(第五届华杯赛复赛试题)
分析:因为父母都戴着同样颜色的帽子,所以父母的血型都相同,这样血型表只需保留一、五、八、十这4行。又由于三种颜色的帽子分别表示AB、A、O三种血型,所以第八行也可划去。这样血型表就比原来简单多了,再讨论这个简表就不难得出血型间的关系,从而再得出题目结论。
解:因为父母都戴着同样颜色的帽子,所以父母的血型都相同,根据血型表,只有O、O,A、A,B、B,AB、AB符合条件。
又因为父母都戴着红、黄、蓝三种颜色的帽子,而三种颜色依次表示所具有的血型为AB、A、O,所以符合条件的只有O、O,A、A,AB、AB。因而,可以得出下面的简表:
父母的血型            子女可能的血型
                 O、O	    O
	A、A	        A、O
	AB、AB	             A、B、AB
从上面的简表可以看出父母的血型为O的,孩子血型一定为O,即穿红上衣的孩子,父母戴蓝帽子。
划去简表的第一行及子女血型中的O,又三个孩子中没有AB血型,所以子女血型中的AB也可划去,这样只剩第二行。
由第二行,父母的血型为A的,子女的血型一定为A,即穿黄上衣的孩子,父母戴黄帽子。
最后,穿蓝上衣的孩子,父母戴红帽子。
评注:1、本题先将问题简化,再从最简单的情况入手,把结果能确定下来的先确定下来,然后再继续讨论,结果不能确定下来的,就分情况讨论,这种方法叫枚举法。枚举法在逻辑推理中常用。
      2、上面的解法是从父母的血型出发分析,从而确定孩子的血型,本题也可从孩子的血型出发分析来确定父母的血型。
例7 在某市举行的一次乒乓球比赛中,有6名选手参赛,其中专业选手与业余选手各3名.比赛采用单循环方式进行,就是说每两名选手都要比赛一场。为公平起见,用以下方法计分:开赛前每位选手各有10分作为底分,每赛一
初一数学竞赛系列讲座(16)逻辑原理.doc

下载此电子书资料需要扣除0点,

电子书评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论

下载说明

* 即日起,本站所有电子书免费、无限量下载下载,去掉了每日50个下载的限制
* 本站尽量竭尽努力将电子书《初一数学竞赛系列讲座(16)逻辑原理.doc》提供的版本是完整的,全集下载
* 本站站内提供的所有电子书、E书均是由网上搜集,若侵犯了你的版权利益,敬请来信通知我们!

本类热门下载

Copyright © 2005-2020 www.book118.com. All Rights Reserved