2011年新疆中考专题复习2 方程与不等式
方程与方程组
不等式与不等式组
知识结构及内容: 1几个概念
2一元一次方程
(一)方程与方程组 3一元二次方程
4方程组
5分式方程
6应用
概念:方程、方程的解、解方程、方程组、方程组的解
一元一次方程:
解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零)
例题:.解方程:
(1) (2)
(3)【05湘潭】 关于x的方程mx+4=3x+5的解是x=1,则m= 。
3、一元二次方程:
一般形式:
解法:直接开平方法、因式分解法、配方法、公式法
求根公式
例题:
①、解下列方程:
(1)x2-2x=0; (2)45-x2=0;
(3)(1-3x)2=1; (4)(2x+3)2-25=0.
(5)(t-2)(t+1)=0; (6)x2+8x-2=0
(7 )2x2-6x-3=0; (8)3(x-5)2=2(5-x)
② 填空:
(1)x2+6x+( )=(x+ )2;
(2)x2-8x+( )=(x- )2;
(3)x2+x+( )=(x+ )2
(3)判别式△=b2-4ac的三种情况与根的关系
当时 有两个不相等的实数根 ,
当时 有两个相等的实数根
当时 没有实数根。
当△≥0时 有两个实数根
例题.①.(无锡市)若关于x的方程x2+2x+k=0有两个相等的实数根,则k满足 ( )
A.k>1 B.k≥1 C.k=1 D.k<1
②(常州市)关于的一元二次方程根的情况是( )
(A)有两个不相等实数根 (B)有两个相等实数根
(C)没有实数根 (D)根的情况无法判定
③.(浙江富阳市)已知方程有两个不相等的实数根,则、满足的关系式是( )
A、 B、 C、 D、
(4)根与系数的关系:x1+x2=,x1x2=
例题: (浙江富阳市)已知方程的两根分别为、,则 的值是( )
A、 B、 C、 D、
方程组:
二元(三元)一次方程组的解法:代入消元、加减消元
例题:【05泸州】解方程组
【05南京】解方程组
【05苏州】解方程组:
【05遂宁课改】解方程组:
【05宁德】解方程组:
5、分式方程:
分式方程的解法步骤:
一般方法:选择最简公分母、去分母、解整式方程,检验
换元法
例题:①、解方程:的解为
根为
②、【北京市海淀区】当使用换元法解方程时,若设,则原方程可变形为( )
A.y2+2y+3=0 B.y2-2y+3=0
C.y2+2y-3=0 D.y2-2y-3=0
(3)、用换元法解方程时,设,则原方程可化为( )
(A) (B) (C) (D)
6、应用:
(1)分式方程(行程、工作问题、顺逆流问题)
(2)一元二次方程(增长率、面积问题)
(3)方程组实际中的运用,例题:①轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.(提示:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度)
②乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10
千米/时,结果两辆车同时到达C城.求两车的速度
③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)
④【05绵阳】已知等式 (2A-7B) x+(3A-8B)=8x+10对一切实数x都成立,求A、B的值
⑤【05南通】某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:
捐款(元) 1 2 3 4 人 数 6 7
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.
若设捐款2元的有名同学,捐款3元的有名同学,根据题意,可得方程组
A、 B、 C、 D、
⑥已知三个连续奇数的平方和是371,求这三个奇数.
⑦一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.
解:
1几个概念
(二)不等式与不等式组 2不等式
3不等式(组)
1、几个概念:不等式(组)、不等式(组)的解集、解不等式(组)
2、不等式:
(1)怎样列不等式:
1.掌握表示不等关系的记号
2.掌握有关概念的含义,并能翻译成式子.
(1)和、差、积、商、幂、倍、分等运算.
(2)“至少”、“最多”、“不超过”、“不少于”等词语.
①a为非负数,a为正数,a不是正数
解:
②
(2)8与y的2倍的和是正数;
(3)x与5的和不小于0;
(5)x的4倍大于x的3倍与7的差;
b,那么a+c b+c,a-c b-c
推论:如果a+c b,那么a b-c。
不等式的性质2:如果a b,并且c 0,那么ac bc。
不等式的性质3:如果a b,并且c 0,那么ac bc。
解不等式的过程,就是要将不等式变形成x a或x a的形式
步骤:(与解一元一次方程类似)
去分母、去括号、移项、合并同类项、系数化一
(注:系数化一时,系数为正不等号方向不变;系数为负方向改变)
例题:①解不等式 (1-2x)
②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页?
3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边
例题:①
不等式组 数轴表示 解集 ②
例题:如果a b,比较下列各式大小
(1) ,(2) ,(3)
(4) ,(5)
③
【05黄岗】不等式组的解集应为( )
A、 B、 C、 D、或≥1
解
④求不等式组2≤3x-7 8的整数解。
课后练习:
1、下面方程或不等式的解法对不对?
由-x=5,得x=-5;( )
由-x 5,得x -5;( )
由2x 4,得x -2;( )
由-≤3,得x≥-6。( )
2、判断下列不等式的变形是否正确:
由a b,得ac bc;( )
由x y,且m0,得- ;( )
由x y,得xz2 yz2;( )
由xz2 yz2,得x y;( )
3、把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个,问有几个孩子?有多少只苹果?
辅导班方程与不等式资料答案:
例题:.解方程:
(1)解:(x=1) (x=1)
(3)【05湘潭】 解: (m=4 )
例题:
①、解下列方程:
解: (1)( x1= 0 x2= 2 ) (2) (x1= 3√5 x2= —3√5 )
(3)(x1=0 x2= 2/3) (4)(x1= — 4 x2= 1)
(5)( t1= — 1 t2= 2 ) (6)(x1= — 4+3√2 x2= — 4—3√2 )
(7)(x1=(3+√15)/2 x2= ( 3—√15)/2 )
(8)(x1= 5 x2= 3/13)
② 填空:(1)x2+6x+( 9 )=(x+ 3 )2;
(2)x2-8x+(16)=(x-4 )2;
(3)x2+x+(9/16 )=(x+3/4 )2
例题.①. ( C ) ② B ③.(A)
(4)根与系数的关系:x1+x2=,x1x2=
例题:( A )
例题:【05泸州】解方程组 解得: x=5
y=2
2011年新疆中考数学专题复习-方程与不等式.doc
下载此电子书资料需要扣除0点,





