首 页 - ┆ 小小说社会科学搜榜改进建议哲学宗教政治法律文化科教语言文字医学管理资源艺术资料数理化天文地球专业技术教育资源建筑房地产
当前位置:e书联盟 > 教育资源 > 小学初中 > 初中数学
2010年中考数学压轴题精选(二)及答案.doc
运行环境:Win9X/Win2000/WinXP/Win2003/
教育语言:简体中文
教育类型:国产软件 - 小学初中 - 初中数学
授权方式:共享版
教育大小:687 KB
推荐星级:
更新时间:2012-03-14 08:50:08
联系方式:暂无联系方式
官方主页:Home Page
解压密码:点击这里
  • 好的评价 此教育真真棒!就请您
      60%(3)
  • 差的评价 此教育真差劲!就请您
      40%(2)

2010年中考数学压轴题精选(二)及答案.doc介绍

★★11、(2010德化)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). 
① 当t=时,判断点P是否在直线ME上,并说明理由;
② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
解:(1)
(2)①点P不在直线ME上;
②依题意可知:P(,),N(,)
当0<t<3时,以P、N、C、D为顶点的多边形是四边形PNCD,依题意可得:
	=+=+=
=
∵抛物线的开口方向:向下,∴当=,且0<t<<3时,=
当时,点P、N都重合,此时以P、N、C、D为顶点的多边形是三角形
依题意可得,==3
综上所述,以P、N、C、D为顶点的多边形面积S存在最大值. 
★★12、(2010德州)已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.
解:(1)∵二次函数的图象经过点C(0,-3),∴c =-3.
将点A(3,0),B(2,-3)代入得
解得:a=1,b=-2.∴.
配方得:,所以对称轴为x=1. 
(2) 由题意可知:BP= OQ=0.1t.
∵点B,点C的纵坐标相等,∴BC∥OA.
过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E.
要使四边形ABPQ为等腰梯形,只需PQ=AB.
即QE=AD=1.又QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t,∴2-0.2t=1.
解得t=5.即t=5秒时,四边形ABPQ为等腰梯形.
②设对称轴与BC,x轴的交点分别为F,G.
∵对称轴x=1是线段BC的垂直平分线,∴BF=CF=OG=1.
又∵BP=OQ,∴PF=QG.又∵∠PMF=∠QMG,∴△MFP≌△MGQ.
∴MF=MG.∴点M为FG的中点,∴S=,
=.由=.
.∴S=.又BC=2,OA=3,
∴点P运动到点C时停止运动,需要20秒.
∴0 t≤20. ∴当t=20秒时,面积S有最小值3.
★★13、(2010东阳)如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t。求:
(1)C的坐标为         ▲      ;
(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;
并求以A、B、C、R为顶点的四边形是梯形
时t的值及S的最大值。
解:(1)C(4,1);
(2)当∠MDR=450时,t=2,点H(2,0)
当∠DRM=450时,t=3,点H(3,0)
(3)S=-t2+2t(0<t≤4);(1分)S=t2-2t(t>4)
当CR∥AB时,t=,S=
当AR∥BC时,t=,S=
当BR∥AC时,t=,S= 
★★14、(2010恩施)如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
解:(1)将B、C两点的坐标代入得解得:
所以二次函数的表达式为: 
(2)存在点P,使四边形POPC为菱形.设P点坐标为(x,),
PP交CO于E,若四边形POPC是菱形,则有PC=PO.
连结PP 则PE⊥CO于E,∴OE=EC=∴=.
∴= 
解得=,=(不合题意,舍去)
∴P点的坐标为(,)
(3)过点P作轴的平行线与BC交于点Q,与OB交于点F,设P(x,),
易得,直线BC的解析式为,则Q点的坐标为(x,x-3).
=
当时,四边形ABPC的面积最大
此时P点的坐标为,四边形ABPC的
面积. 
★★15、(2010广安)如图,直线y = -x-1与抛物线y=ax2+bx-4都经过点A(-1, 0)、B(3, -4).
(1)求抛物线的解析式;
(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;
(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在.请说明理由.
解:(1)由题知,解得a=1, b= -3 ,
∴抛物线解析式为y=x2-3x-4  
(2)设点P坐标(m, -m-1),则E点坐标(m, m2-3m-4)
∴线段PE的长度为:-m-1- (m2-3m-4)= -m2+2m+3 = -(m-1)2+4
∴由二次函数性质知当m=1时,函数有最大值4,所以线段PE长度的最大值为4。 
(3)由(2)知P(1, -2)
①过P作PC的垂线与x轴交于F,与抛物线交于Q, 
设AC与y轴交于G,则G(0, -1),OG=1,又可知A(-1, 0)  则OA=1,∴△OAG是等腰直角三角形,∴∠OAG=45o
∴△PAF是等腰直角三角形,由对称性知F(3, 0)
设直线PF的解析式为y=k1x+b1,则
,解之得k1=1, b1= -3,∴直线PF为y=x-3
由解得  
∴Q1(2+, -1)  Q2(2-, --1)
②过点C作PC的垂线与x轴交于H,与抛物线交点为Q,由∠HAC=45o,知△ACH是等腰直角三角形,由对称性知H坐标为(7, 0),设直线CH的解析式为y=k2x+b2,则
,解之得k2=1, b2= -7,∴直线CH的解析式为y=x-7
解方程组得 
当Q(3, -4)时,Q与C重合,△PQC不存在,所以Q点坐标为(1, -6)
综上所述在抛物线上存在点Q1(2+, -1)、Q2(2-, --1)、Q3(1, -6)使得△PCQ是以PC为直角边的直角三角形。
★★16、(2010广州)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若=4,求△ABC的周长.
解:(1)连接OA,取OP与AB的交点为F,则有OA=1.
∵弦AB垂直平分线段OP,∴OF=OP=,AF=BF.
在Rt△OAF中,∵AF===,∴AB=2AF=.
(2)∠ACB是定值.
理由:由(1)易知,∠AOB=120°,
因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,
因为∠DAE+∠DBA=∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;
(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.
∴
=AB?DE+BC?DH+AC?DG=(AB+BC+AC) ?DE=l?DE.
∵=4,∴=4,∴l=8DE.
∵CG,CH是⊙D的切线,∴∠GCD=∠ACB=30°,
∴在Rt△CGD中,CG===DE,∴CH=CG=DE.
又由切线长定理可知AG=AE,BH=BE,
∴l=AB+BC+AC=2+2DE=8DE,解得DE=,
∴△ABC的周长为.
★★17、(2010广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.
(1)记△ODE的面积为S,求S与的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
解:(1)由题意得B(3,1).
若直线经过点A(3,0)时,则b=
若直线经过点B(3,1)时,则b=
若直线经过点C(0,1)时,则b=1
①若直线与折线OAB的交点在OA上时,即1<b≤,如图25-a,
2010年中考数学压轴题精选(二)及答案.doc

下载此电子书资料需要扣除0点,

电子书评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论

下载说明

* 即日起,本站所有电子书免费、无限量下载下载,去掉了每日50个下载的限制
* 本站尽量竭尽努力将电子书《2010年中考数学压轴题精选(二)及答案.doc》提供的版本是完整的,全集下载
* 本站站内提供的所有电子书、E书均是由网上搜集,若侵犯了你的版权利益,敬请来信通知我们!

本类热门下载

Copyright © 2005-2020 www.book118.com. All Rights Reserved