2010年中考数学试题分类汇编——与圆有关的位置关系
(2010哈尔滨)5.如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°,
那么∠AOB等于( ) D
A.60° B.90° C.120° D.150°
(2010台州市)如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是 ▲ ,阴影部分面积为(结果保留π) ▲ .
答案:相切(2分),π
(桂林2025.(本题满分10分)△ABC的外接圆,FH是⊙O 的切线,切点为F,
FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.
25.证明OF
∵FH是⊙O的切线
∴OF⊥FH ……………1分
∵FH∥BC ,
∴OF垂直平分BC ………2分
∴
∴AF平分∠BAC …………3分
():
∠1=∠2,∠4=∠3,∠∠2 ……………4分
∴∠1+∠4=∠2+∠3
∴∠1+∠4=∠5+∠3 ……………5分
∠FDB=∠FBD
∴BF=FD ………………6分
(): BFE和△AFB中
∵∠5=∠2=∠1,∠F=∠F
∴△BFE∽△AFB ………………7分
∴,∴
∴ ……………………9分
∴
∴AD== …………………10分
(2010年6.已知两圆的半径R、r分别为方程的两根,两圆的圆心距为1,两圆的位置关系是
A.外离 B.内切 C.相交 D.外切
答案 B
(2010年10. 如图,正三角形的内切圆半径为1,那么这个正三角形的边长为
A. B. C. D.
答案 D
(2010年无锡)6.已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d的取值满足 ( ▲ )
A. B. C. D.
本试卷由无锡市天一实验学校金杨建录制 QQ:623300747.转载请注明!
答案 D
(2010年无锡)27.(本题满分10分)如图,已知点,经过A、B的直线以每秒1个单位的
速度向下作匀速平移运动,与此同时,点P从点B出发,在直线上以每秒1个单位的速度沿直线向右下方向作匀速运动.设它们运动的时间为秒.
(1)用含的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥轴
于D,问:为何值时,以P为圆心、1为半
径的圆与直线OC相切?并说明此时
与直线CD的位置关系.
答案解:⑴作PH⊥OB于H ﹙如图1﹚,∵OB=6,OA=,∴∠OAB=30°
∵PB=t,∠BPH=30°,∴BH=,HP= ;
∴OH=,∴P﹙,﹚
⑵当⊙P在左侧与直线OC相切时﹙如图2﹚,
∵OB=,∠BOC=30°
∴BC=
∴PC
由,得 ﹙s﹚,此时⊙P与直线CD相割.
当⊙P在左侧与直线OC相切时﹙如图3﹚,
PC
由,得﹙s﹚,此时⊙P与直线CD相割.
综上,当或时,⊙P与直线OC相切,⊙P与直线CD相割.
(2010年26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
答案(本题满分10分)
解:(1)∵OA=OC,∴∠A=∠ACO
∵∠COB=2∠A ,∠COB=2∠PCB
∴∠A=∠ACO=∠PCB ……………………………………………………1分
∵AB是⊙O的直径
∴∠ACO+∠OCB=90° …………………………………………………2分
∴∠PCB+∠OCB=90°,即OC⊥CP …………………………………………3分
∵OC是⊙O的半径
∴PC是⊙O的切线 …………………………………………………4分
(2)∵PC=AC ∴∠A=∠P
∴∠A=∠ACO=∠PCB=∠P
∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB
∴∠CBO=∠COB ……………………………………………5分
∴BC=OC
∴BC=AB ………………………………………………………6分
(3)连接MA,MB
∵点M是弧AB的中点
∴弧AM=弧BM ∴∠ACM=∠BCM ………7分
∵∠ACM=∠ABM ∴∠BCM=∠ABM
∵∠BMC=∠BMN
∴△MBN∽△MCB
∴
∴BM2=MC·MN ……………………8分
∵AB是⊙O的直径,弧AM=弧BM
∴∠AMB=90°,AM=BM
∵AB=4 ∴BM= ………………………………………………………9分
∴MC·MN=BM2=8 ……………………………………………………10分
(2010宁波市)6.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是
A.内切 B.相交 C.外切 D.外离
13. (2010年金华) 如果半径为3cm的⊙O1与半径为4cm的⊙O2内切,那么两圆的圆心距O1O2= ▲ cm.
答案:1;
6.(2010年长沙)已知⊙O1、⊙O2的半径分别是、,若两圆相交,则圆心距O1O2可能取的值是 B
A.2 B.4 C.6 D.8
(2010年成都)8.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( )
(A)相交 (B)外切 (C)外离 (D)内含
答案:A
(2010年眉山)4.⊙O1的半径为3cm,⊙O2的半径为5cm,圆心距O1O2=2cm,这两圆的位置关系是
A.外切 B.相交 C.内切 D.内含
毕节24.(本题12分)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.
24.证明:(证法一)连接. 1分
∵是⊙O的直径,
. 2分
∵是的中点,
. 4分
. 6分
∵. 8分
.即. 10分
是⊙O的切线. 12分
(证法二)连接. 1分
∵,
. 2分
. 4分
∵OC=OE.
∴∠2=∠4.
∴∠1=∠3. 6分
又,
. 8分
. 10分
是⊙O的切线. 12分
15.如图,在矩形ABCD中,AB=6 ,BC=4,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是.相离
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东5°方向上,距离点P 320千米处.
(1) 说明本次台风会影响B市;
2)求这次台风影响B市的时间
答案:(1) 作BH⊥PQ于点H, 在Rt△BHP中,
由条件知, PB = 320, (BPQ = 30°, 得 BH = 320sin30° = 160 200,
∴ 本次台风会影响B市.
(2) 如图, 若台风中心移动到P1时, 台风开始影响B市, 台风中心移动到P2时, 台风影响结束.
由(1)得BH = 160, 由条件得BP1=BP2 = 200,
∴所以P1P2 = 2=240,
∴台风影响的时间t = = 8(小时). 2010陕西省
解:(1)∵ DE 垂直平分AC
∴∠DEC=90°
∴DC 为△DEC外接圆的直径
∴DC的中点 O即为圆心
连结OE又知BE是圆O的切线
∴∠EBO+∠BOE=90°
在RT△ABC 中 E 斜边AC 的中点
∴BE=EC
∴∠EBC=∠C
又∵∠BOE=2∠C
∴∠C+2∠C=90°
∴∠C=30°
(2)在RT△ABC中AC= ∴EC=AC=
∵∠ABC=∠DEC=90° ∴△ABC∽△DEC
∴ ∴DC=
DEC 外接圆半径为
(2010年天津市是⊙的直径,是⊙的切线,是切点,与⊙交于点
2010中考数学试题分类汇编-与圆有关的位置关系.doc
下载此电子书资料需要扣除0点,





