2010年中考数学试题分类汇编——与圆有关的位置关系 (2010哈尔滨)5.如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°, 那么∠AOB等于( ) D A.60° B.90° C.120° D.150° (2010台州市)如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是 ▲ ,阴影部分面积为(结果保留π) ▲ . 答案:相切(2分),π (桂林2025.(本题满分10分)△ABC的外接圆,FH是⊙O 的切线,切点为F, FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 25.证明OF ∵FH是⊙O的切线 ∴OF⊥FH ……………1分 ∵FH∥BC , ∴OF垂直平分BC ………2分 ∴ ∴AF平分∠BAC …………3分 (): ∠1=∠2,∠4=∠3,∠∠2 ……………4分 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ……………5分 ∠FDB=∠FBD ∴BF=FD ………………6分 (): BFE和△AFB中 ∵∠5=∠2=∠1,∠F=∠F ∴△BFE∽△AFB ………………7分 ∴,∴ ∴ ……………………9分 ∴ ∴AD== …………………10分 (2010年6.已知两圆的半径R、r分别为方程的两根,两圆的圆心距为1,两圆的位置关系是 A.外离 B.内切 C.相交 D.外切 答案 B (2010年10. 如图,正三角形的内切圆半径为1,那么这个正三角形的边长为 A. B. C. D. 答案 D (2010年无锡)6.已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d的取值满足 ( ▲ ) A. B. C. D. 本试卷由无锡市天一实验学校金杨建录制 QQ:623300747.转载请注明! 答案 D (2010年无锡)27.(本题满分10分)如图,已知点,经过A、B的直线以每秒1个单位的 速度向下作匀速平移运动,与此同时,点P从点B出发,在直线上以每秒1个单位的速度沿直线向右下方向作匀速运动.设它们运动的时间为秒. (1)用含的代数式表示点P的坐标; (2)过O作OC⊥AB于C,过C作CD⊥轴 于D,问:为何值时,以P为圆心、1为半 径的圆与直线OC相切?并说明此时 与直线CD的位置关系. 答案解:⑴作PH⊥OB于H ﹙如图1﹚,∵OB=6,OA=,∴∠OAB=30° ∵PB=t,∠BPH=30°,∴BH=,HP= ; ∴OH=,∴P﹙,﹚ ⑵当⊙P在左侧与直线OC相切时﹙如图2﹚, ∵OB=,∠BOC=30° ∴BC= ∴PC 由,得 ﹙s﹚,此时⊙P与直线CD相割. 当⊙P在左侧与直线OC相切时﹙如图3﹚, PC 由,得﹙s﹚,此时⊙P与直线CD相割. 综上,当或时,⊙P与直线OC相切,⊙P与直线CD相割. (2010年26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB; (3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值. 答案(本题满分10分) 解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB ……………………………………………………1分 ∵AB是⊙O的直径 ∴∠ACO+∠OCB=90° …………………………………………………2分 ∴∠PCB+∠OCB=90°,即OC⊥CP …………………………………………3分 ∵OC是⊙O的半径 ∴PC是⊙O的切线 …………………………………………………4分 (2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB ∴∠CBO=∠COB ……………………………………………5分 ∴BC=OC ∴BC=AB ………………………………………………………6分 (3)连接MA,MB ∵点M是弧AB的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM ………7分 ∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN∽△MCB ∴ ∴BM2=MC·MN ……………………8分 ∵AB是⊙O的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM ∵AB=4 ∴BM= ………………………………………………………9分 ∴MC·MN=BM2=8 ……………………………………………………10分 (2010宁波市)6.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是 A.内切 B.相交 C.外切 D.外离 13. (2010年金华) 如果半径为3cm的⊙O1与半径为4cm的⊙O2内切,那么两圆的圆心距O1O2= ▲ cm. 答案:1; 6.(2010年长沙)已知⊙O1、⊙O2的半径分别是、,若两圆相交,则圆心距O1O2可能取的值是 B A.2 B.4 C.6 D.8 (2010年成都)8.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( ) (A)相交 (B)外切 (C)外离 (D)内含 答案:A (2010年眉山)4.⊙O1的半径为3cm,⊙O2的半径为5cm,圆心距O1O2=2cm,这两圆的位置关系是 A.外切 B.相交 C.内切 D.内含 毕节24.(本题12分)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线. 24.证明:(证法一)连接. 1分 ∵是⊙O的直径, . 2分 ∵是的中点, . 4分 . 6分 ∵. 8分 .即. 10分 是⊙O的切线. 12分 (证法二)连接. 1分 ∵, . 2分 . 4分 ∵OC=OE. ∴∠2=∠4. ∴∠1=∠3. 6分 又, . 8分 . 10分 是⊙O的切线. 12分 15.如图,在矩形ABCD中,AB=6 ,BC=4,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是.相离 如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东5°方向上,距离点P 320千米处. (1) 说明本次台风会影响B市; 2)求这次台风影响B市的时间 答案:(1) 作BH⊥PQ于点H, 在Rt△BHP中, 由条件知, PB = 320, (BPQ = 30°, 得 BH = 320sin30° = 160 200, ∴ 本次台风会影响B市. (2) 如图, 若台风中心移动到P1时, 台风开始影响B市, 台风中心移动到P2时, 台风影响结束. 由(1)得BH = 160, 由条件得BP1=BP2 = 200, ∴所以P1P2 = 2=240, ∴台风影响的时间t = = 8(小时). 2010陕西省 解:(1)∵ DE 垂直平分AC ∴∠DEC=90° ∴DC 为△DEC外接圆的直径 ∴DC的中点 O即为圆心 连结OE又知BE是圆O的切线 ∴∠EBO+∠BOE=90° 在RT△ABC 中 E 斜边AC 的中点 ∴BE=EC ∴∠EBC=∠C 又∵∠BOE=2∠C ∴∠C+2∠C=90° ∴∠C=30° (2)在RT△ABC中AC= ∴EC=AC= ∵∠ABC=∠DEC=90° ∴△ABC∽△DEC ∴ ∴DC= DEC 外接圆半径为 (2010年天津市是⊙的直径,是⊙的切线,是切点,与⊙交于点
2010中考数学试题分类汇编-与圆有关的位置关系.doc
下载此电子书资料需要扣除0点,