第27章 梯形 一、选择题 1. (2011江苏扬州,7,3分)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。其中假命题有( ) A. 1个 B. 2个 C. 3个 D. 4个 【答案】 2. (2011山东滨州,12,3分)如图,在一张△ABC纸片中, ∠C=90°, ∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( ) A.1 B.2 C.3 D.4 【答案】C 3. (2011山东烟台,6,4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 A.8 B.9 C.10 D.12 【答案】B 4. 【答案】 5. (2011台湾台北,15)图(五)为梯形纸片ABCD,E点在上,且,=3,=9,=8。若以为折线,将C折至上,使得与交于F点,则长度为何? A. 4.5 B。5 C。5.5 D.6 【答案】B 6. 7. (2011山东临沂,12,3分)如图,梯形ABCD中,AD∥BC,AB=CD,AD=2,BC=6,∠B=60°,则梯形ABCD的周长是( ) A.12 B.14 C.16 D.18 【答案】C 8. (2011四川绵阳11,3)如图,在等腰梯形站ABCD中,AB//CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC, AB = 8cm,则△COD的面积为 A. B. C. D. 【答案】A 9. (2011湖北武汉市,7,3分)如图,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是?A.40°. B.45°. ?C.50°. D.60°. ?【答案】C 10.(2011湖北宜昌,12,3分)如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( ). A. ∠HGF = ∠GHE B. ∠GHE = ∠HEF C. ∠HEF = ∠EFG D. ∠HGF = ∠HEF 【答案】 二、填空题 1. (2011福建福州,14分)4,直角梯形中,∥,,则 度. 【答案】 2. (2011 浙江湖州,14,4)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9AD=1,则BC的长是 . 【答案】3 3. 【答案】 4. (2011江苏连云港,16,3分)一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角线长为_______. 【答案】 5. 6. ( 2011重庆江津, 13,4分)在梯形ABCD中,AD∥BC,中位线长为5,高为6,则它的面积是___________. 【答案】 7. .等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝. 【答案】6 8. 2011山东临沂,19,3分)如图,上面各图都是用全等的等边三角形拼成的一组图形,则在第10个这样的图形中,共有 个等腰梯形. ⑴ ⑵ ⑶ 【答案】100 9. (2011湖北襄阳,1,3分)如图4,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t= 秒时,以点P,Q,E,D为顶点的四边形是平行四边形. 【答案】 10.(2011江苏盐城,15,3分)将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD,则四边形ABCD的形状是 ▲ . 【答案】 三、解答题 1. (2011安徽芜湖,21,8分)如图,在梯形ABCD中,DC‖AB,AD=BC, BD平分过点D作,过点C作,垂足分别为E、F,连接EF,求证:为等边三角形. 【答案】 证明:因为DC‖AB,,所以. 又因为平分,所以 ……2分 因为DC‖AB,所以,所以 所以 4分 因为,所以F为BD中点,又因为, 所以 ……6分 由,得, 所以为等边三角形. ………………8分 2. (2011山东菏泽,17(2),7分)如图,在梯形ABCD中,AD∥BC,∠B=,∠C=,AD=1,BC=4, E为AB中点,EF∥DC交BC于点F, 求EF的长. 解:过点A作AG∥DC,∵AD∥BC, ∴四边形AGCD是平行四边形, ∴GC=AD,∴BG=BC-AD=4-1=3, 在Rt△ABG中, AG=, ∵EF∥DC∥AG, ∴, ∴EF=. 3. (2011山东泰安,27 ,10分)已知,在梯形ABCD中,AD∥BC,∠ABC=900,BC=2AD,E是BC的中点,连接AE、AC(1)点F是DC上一点,连接EF,交AC于点O(如图①),求证:△AOE∽△COF (2)若点F是DC的中点,连接BD,交AE于点G(如图②),求证:四边形EFDG是菱形。 【答案】证明:∵点E是BC的中点,BC=2AD ∴EC=BE=BC=AD 又∵AD∥EC ∴四边形AECD为平行四边形 ∴AE∥DC ∴∠AEO=∠CFO,∠EAO=∠FCO ∴△AOE△COF (2)证明:连接DE ∵AD∥BE ,AD=BE ∴四边形ABED是平行四边形 又∠ABE=900 ∴ABED是矩形 ∴GE=GA=GB=GD=BD=AE ∵E、F分别是BC、CD的中点 ∴EF、E是△CBD的两条中位线 ∴EF=BD=GD,GE=CD=DF 又GE=D∴EF=GD=GE=DF 则四边形EFDG是菱形 4. 如图,四边形ABCD是等腰梯形,AD∥BC,点E,F在BC上,且BE=CF,连接DE,AF.求证:DE=AF. 【答案】证明:∵BE=FC ∴BE+EF=FC+EF,即BF=CE ∵四边形ABCD是等腰梯形 ∴AB=DC ∠ B=∠C 在⊿DCE和⊿ABF中, DC=AB ∠B=∠C CE=BF ∴⊿DCE≌⊿ABF(SAS) ∴DE=AF 5. (2011四川南充市,21,8分)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=600,M是BC的中点。 (1)求证:⊿MDC是等边三角形; (2)将⊿MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC即MC′)同时与AD交于一点F时,点E,F和点A构成⊿AEF.试探究⊿AEF的周长是否存在最小值。如果不存在,请说明理由;如果存在,请计算出⊿AEF周长的最小值 【答案】(1)证明:过点D作DP⊥BC,于点P,过点A作AQ⊥BC于点Q, ∵∠C=∠B=600 ∴CP=BQ=AB,CP+BQ=AB 又∵ADPQ是矩形,AD=PQ,故BC=2AD, 由已知,点M是BC的中点, BM=CM=AD=AB=CD, 即⊿MDC中,CM=CD, ∠C=600,故⊿MDC是等边三角形. (2)解:⊿AEF的周长存在最小值,理由如下: 连接AM,由(1)平行四边形ABMD是菱形,⊿MAB, ⊿MAD和⊿MC′D′是等边三角形, ∠BMA=∠BME+∠AME=600, ∠EMF=∠AMF+∠AME=600 ∴∠BME=∠AMF) 在⊿BME与⊿AMF中,BM=AM, ∠EBM=∠FAM=600 ∴⊿BME≌⊿AMF(ASA) ∴BE=AF, ME=MF,AE+AF=AE+BE=AB ∵∠EMF=∠DMC=600 ,故⊿EMF是等边三角形,EF=MF. ∵MF的最小值为点M到AD的距离,即EF的最小值是. ⊿AEF的周长=AE+AF+EF=AB+EF, ⊿AEF的周长的最小值为2+. 6. (2011浙江杭州22, 10)在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F. (1)求证:△FOE≌ △DOC; (2)求∠OEF的值; (3)若直线EF与线段AD,BC分别相交于点G,H,求的值. 【答案】(1)证明:∵E,F分别为线段OA,OB的中点,∴EF∥AB,AB=2EF,∵AB=2CD,∴EF=CD,∵AB∥CD,∴EF∥CD,∴∠OEF=∠OCD,∠OFE=∠ODC,∴△FOE≌ △DOC;, (2) 在△ABC中,∵∠ABC=90°,∴,.∵EF∥AB,∴∠OEF=∠CAB,∴ (3) ∵△FOE≌ △DOC,∴OE=OC,∵AE=OE,AE=OE=OC,∴.∵EF∥AB,∴△CEH∽△CAB,∴,∴,∵EF=CD,∴ ,同理
2011年中考数学试题分类27 梯形.doc
下载此电子书资料需要扣除0点,