2010年浙江省绍兴市初中毕业生学业考试试卷 数 学 一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.的相反数是( ) A.2 B.-2 C. D. 2.如图,是由四个相同的小正方体组成的立体图形,它的俯视图是( ) 3.已知⊙O的半径为5,弦AB的弦心距为3,则AB的长是( ) A.3 B.4 C.6 D.8 4.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 ( ) A. B. C. D. 5.化简,可得( ) A. B. C. D. 6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如表则这四人中发挥最稳定的是甲乙丙丁A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是( ) A.摩托车比汽车晚到1 h B. A,B两地的路程为20 km C.摩托车的速度为45 km/h D.汽车的速度为60 km/h 8.如图已知ABC,分别以AC为圆心BC,AB长为半径画弧两弧交于点D连结D,CD.则有( ) A.∠ADC与∠BAD相等 B.∠ADC与∠BAD互补 C.∠ADC与∠ABC互补 D.∠ADC与∠ABC互余 9.已知(x1, y1)x2, y2)x3, y3)的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是( ) A. y3<y1<y2 B. y2<y1<y3 C. y1<y2<y3 D. y3<y2<y1 10.如图为某机械装置的截面图,相切的两圆⊙O1, ⊙O2均与⊙O的弧AB相切,且O1O2∥l1( l1为水 平线),⊙O1,⊙O2的半径均为30 mm,弧AB的 最低点到l1的距离为30 mm,公切线l2与l1间的 距离为100 mm.则⊙O的半径为( ) A.70 mm B.80 mm C.85 mm D.100 mm 二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中 横线上) 11.因式分解:=_______________. 12.如图,⊙O是正三角形的外接圆,点在劣弧上, =22°,则的度数为_____________. 13.不等式-的解是_______________. 14.根据第六届世界合唱比赛的活动细则,每个参赛的合唱团在比赛时须演唱4首歌曲.爱乐合唱团已确定了2首歌曲,还需在A,B两首歌曲中确定一首,在C,D两首歌曲中确定另一首,则同时确定A,C为参赛歌曲的概率是_______________. 15.做如下操作:在等腰三角形ABC中,AB= AC,AD平分∠BAC, 交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的 像与△ACD重合. 对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线 和高互相重合. 由上述操作可得出的是 (将正确结论的序号都填上). 16.水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度(指缠绕中将部分带子拉成图中所示的平面ABCD时的∠ABC,其中AB为管道侧面母线的一部分)的余弦值为 . 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12 分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(1)计算: ||; (2)先化简,再求值: ,其中. 18.分别按下列要求解答: (1)在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1 C1.画出△A1B1C1; (2)在图2中,△ABC经变换得到△A2B2C2.描述变换过程. 19.绍兴有许多优秀的某旅行社对5月份本社接待的外地游客来旅游的首选景点作了一次抽样调查调查结果如下图表 (1)请()该旅行社预计6月份接待外地来的游客200人请你估计首选景点的人数 20.如图,小敏、小亮从A,B两地观测空中C处一个气球,分 别测得仰角为30°和60°,A,B两地相距100 m.当气球 沿与BA平行地飘移10秒后到达C′处时,在A处测得气 球的仰角为45°. (1)求气球的高度(结果精确到0.1m); (2)求气球飘移的平均速度(结果保留3个有效数字). 21.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与 x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形. (1)求函数y=x+3的坐标三角形的三条边长; (2)若函数y=x+b(b为常数)的坐标三角形周长为16, 求此三角形面积. 22.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年 交各种费用1万元,未租出的商铺每间每年交各种费用5 000元. (1)当每间商铺的年租金定为13万元时,能租出多少间? (2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? 23. (1) 如图1,在正方形ABCD中,点E,F分别在边BC, CD上,AE,BF交于点O,∠AOF=90°. 求证:BE=CF. (2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB, BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF =4.求GH的长. (3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O, ∠FOH=90°,EF=4. 直接写出下列两题的答案: ①如图3,矩形ABCD由2个全等的正方形组成,求GH的长; 24.如图,设抛物线C1:, C2:,C1与C2的交点为A, B,点A的坐标是,点B的横坐标是-2. (1); 线 记过点M的直线为且与x轴交于点N ① 若过点G求点N的坐标; 与求点N横坐标的范围 浙江省2010年初中毕业生学业考试绍兴市试卷 数学参考答案 一、选择题(本大题有10小题,满分40分) 1.D 2.C 3. D 4. D 5. 12. 38° 13. 14. 15.②③ 16. 三、解答题(本大题有8小题,满分80分) 17.(本题满分8分) 解:(1) 原式= 2+1-3+1=1. (2) 原式=, 当时,原式=. 18.(本题满分8分) (1) 如图. (2) 将△ABC先关于点A作中心对称图形,再向左平移 2个单位,得到△A2B2C2.(变换过程不唯一) 19.(本题满分8分) (1) 0.175, 150. 图略. (2) 解:2 600×0.325=845(人) . 20.(本题满分8分) 解:(1) 作CD⊥AB,C/E⊥AB,垂足分别为D,E. ∵ CD =BD·tan60°, CD =(100+BD)·tan30°, ∴(100+BD)·tan30°=BD·tan60°, ∴ BD=50, CD =50≈86.6 m, ∴ 气球的高度约为86.6 m. (2) ∵ BD=50, AB=100, ∴ AD=150 , 又∵ AE =C/E=50, ∴ DE =150-50≈63.40, ∴ 气球飘移的平均速度约为6.34米/秒. 21.(本题满分10分) 解:(1) ∵ 直线y=x+3与x轴的交点坐标为(4,0),与y轴交点坐标为(0,3), ∴函数y=x+3的坐标三角形的三条边长分别为3,4,5. (2) 直线y=x+b与x轴的交点坐标为(,0),与y轴交点坐标为(0,b), 当b 0时,,得b =4,此时,坐标三角形面积为; 当b 0时,,得b =-4,此时,坐标三角形面积为. 综上,当函数y=x+b的坐标三角形周长为16时,面积为. 2
2010年浙江省绍兴市中考数学试卷及答案(word版).doc
下载此电子书资料需要扣除0点,