★★41、(2010深圳)如图10,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=- x- 与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE、⊙M的半径r、CH的长;(3分) (2)如图11,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值; (3)如图12,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由. 解:,CH=2 (2)、如图5,连接QC、Q,, 易知,故,,,由于, ; (3)、如图6,连接AK,AM,延长AM, 与圆交于点G,连接TG,则 , 由于,故,; 而,故 在和中,; 故; ;即: 故存在常数,始终满足,常数 ★★42、(2010随州)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0). (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式; (2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间); (3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式; (4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系. 图a 图b 解:(1) (2)2.5×10+5×120+2×5=635(米) (3) (4) 相等的关系; ★★43、(2010随州)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图). (1)求字母a,b,c的值; (2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形; (3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由. 解:(1)a=-1,b=2,c=0 (2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MP=MF=PF=1,故△MPF为正三角形. (3)不存在.因为当t<,x<1时,PM与PN不可能相等,同理,当t>,x>1时,PM与PN不可能相等。 ★★44、(2010台州)如图,Rt△ABC中,∠C=90°,BC=6,AC=8点P,Q都是斜边AB上的动点,P从B 向A运动,Q从A向B运动,BP=AQ点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥ABQ,交AC于点H当E到达顶点A时,P,Q同时停止运动BP的长为x,△HDE的面积为y求证△DHQ∽△ABC;求y关于x的函数解析式; 当x为何值时,△HDE为等腰三角形?HQ⊥AB, ∴=90°,HD=HA,∴, ∴△DHQ∽△ABC. (2)①如图1,当时, ED=,QH=,此时. 当时,最大值. ②如图2,当时, ED=,QH=,此时. 当时,最大值.∴y与x之间的函数解析式为 y的最大值是. (3)①如图1,当时, 若DE=DH,∵DH=AH=, DE=, ∴=,. 显然ED=EH,HD=HE不可能; ②如图2,当时, 若DE=DH,=,; 若HD=HE,此时点D,E分别与点B,A重合,; 若ED=EH,则△EDH∽△HDA, ∴,,. ∴当x的值为时,△HDE是等腰三角形。 (其他解法相应给分) ★★45、(2010天津)在平面直角坐标系中,已知抛物线与轴交于点、(点在点的左侧),与轴的正半轴交于点,顶点为. (Ⅰ)若,,求此时抛物线顶点的坐标; (Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满足 S△BCE = S△ABC,求此时直线的解析式; (Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足 S△BCE = 2S△AOC,且顶点恰好落在直线上,求此时抛物线的解析式. 解:(Ⅰ)当,时,抛物线的解析式为,即. ∴ 抛物线顶点的坐标为(1,4). .................2分 (Ⅱ)将(Ⅰ)中的抛物线向下平移,则顶点在对称轴上,有, ∴ 抛物线的解析式为(). ∴ 此时,抛物线与轴的交点为,顶点为. ∵ 方程的两个根为,, ∴ 此时,抛物线与轴的交点为,. 如图,过点作EF∥CB与轴交于点,连接,则S△BCE = S△BCF. ∵ S△BCE = S△ABC, ∴ S△BCF = S△ABC. ∴ . 设对称轴与轴交于点, 则. 由EF∥CB,得. ∴ Rt△EDF∽Rt△COB.有. ∴ .结合题意,解得 . ∴ 点,. 设直线的解析式为,则 解得 ∴ 直线的解析式为. (Ⅲ)根据题意,设抛物线的顶点为,(,) 则抛物线的解析式为, 此时,抛物线与轴的交点为, 与轴的交点为,.() 过点作EF∥CB与轴交于点,连接, 则S△BCE = S△BCF. 由S△BCE = 2S△AOC, ∴ S△BCF = 2S△AOC. 得. 设该抛物线的对称轴与轴交于点. 则 . 于是,由Rt△EDF∽Rt△COB,有. ∴ ,即. 结合题意,解得 . ① ∵ 点在直线上,有. ② ∴ 由①②,结合题意,解得. 有,. ∴ 抛物线的解析式为. ★★46、(2010天津)在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、 轴的正半轴上,,,D为边OB的中点. (Ⅰ)若为边上的一个动点,当△的周长最小时,求点的坐标; (Ⅱ)若、为边上的两个动点,且,当四边形的周长最小时,求点、的坐标. 解:(Ⅰ)如图,作点D关于轴的对称点,连接与轴交于点E,连接. 若在边上任取点(与点E不重合),连接、、. 由, 可知△的周长最小. ∵ 在矩形中,,,为的中点, ∴ ,,. ∵ OE∥BC, ∴ Rt△∽Rt△,有. ∴ . ∴ 点的坐标为(1,0). (Ⅱ)如图,作点关于轴的对称点,在边上截取,连接与轴交于点,在上截取. ∵ GC∥EF,, ∴ 四边形为平行四边形,有. 又 、的长为定值, ∴ 此时得到的点、使四边形的周长最小. ∵ OE∥BC, ∴ Rt△∽Rt△, 有 . ∴ . ∴ . ∴ 点的坐标为(,0),点的坐标为(,0) ★★47、(2010湘潭)如图,直线与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线过A、C、OOA·OD,求证:DB是⊙C的切线; 抛物线上是否存在一点P, 使以P、、、 解:(1)A(6,0),B(0,6) 连结OC,由于∠AOB=90o,C为AB的中点,则, 所以点O在⊙C上(没有说明不扣分). 过C点作CE⊥OA,垂足为E,则E为OA中点,故点C的横坐标为3. 又点C在直线y=-x+6上,故C(3,3) 抛物线过点O,所以c=0, 又抛物线过点A、C,所以,解得: 所以抛物线解析式为 (2)OA=OB=6代入OB2=OA·OD,得OD=6 所以OD=OB=OA,∠DBAC的切线 (通过证相似三角形得出亦可) (3)假设存在点P满足题意.因C为AB中点,O在圆上,故∠OCA=90o, 要使以P、O、C、A为顶点的四边形为直角梯形, 则 ∠CAP=90o或 ∠COP=90o, 若∠CAP=90o,则OC∥AP,因OC的方程为y=x,设AP方程为y=x+b. 又AP过点A(6,0),则b=-6, 方程y=x-6与联立解得:,, 故点P1坐标为(-3,-9) 若∠COP=90o,则OP∥AC,同理可求得点P2(9,-9) (用抛物线的对称性求出亦可) 故存在点P1坐标为(-3,-9)和P2(9,-9)满足题意. 如图,已知二次函数图像的顶点坐标为(2,0),直线与二次函数的图像交于A、B两点,其中点A在y轴上. (1)二次函数的解析式为 ☆ ;(2)证明点不在(1)中所求的二次函数的图像上; (3)若C为线段AB的中点,过C点作轴于E点, CE与二次函数的图像交于点. ①轴上存在点K, 使以、、为顶点的四边形是平行四边形,则K点的坐标是 ☆ ; ②二次函数的图像上是否存在点P,使得?若存在,求出P点坐标;若不存在,请说明理由. (1)解:(或). (2)证明:设点在二次函数的图象上,则有: . 整理得,∵.∴原方程无解. ∴点不在二次函数的图象上. (3)①K(0,5)或(0-3); ②二次函数的图象上存在点P,使得. 过点B作BF⊥x轴于F,则BF∥CE∥AO,又C为AB中点,∴OE=EF. 由和可求
2010年中考数学压轴题精选(五)及答案.doc
下载此电子书资料需要扣除0点,